
CISC 3320

C29b File System
Implementation

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

4/18/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides
provided by the authors of the textbook via
the publisher of the textbook

4/18/2019 CUNY | Brooklyn College 2

Outline

• File-System Structure

• File-System Operations

• Directory Implementation

• Allocation Methods

• Free-Space Management

• Efficiency and Performance

• Recovery

• Example: WAFL File System

4/18/2019 CUNY | Brooklyn College 3

File-System Structure
• File structure

• Logical storage unit

• Collection of related information

• File system resides on secondary storage (disks)

• Provided user interface to storage, mapping logical to physical

• Provides efficient and convenient access to disk by allowing data to be stored,
located retrieved easily

• Disk provides in-place rewrite and random access

• I/O transfers performed in blocks of sectors (usually 512 bytes)

• File control block (FCB) – storage structure consisting of information
about a file

• Device driver controls the physical device

• File system organized into layers

4/18/2019 CUNY | Brooklyn College 4

File-System
Layers

4/18/2019 CUNY | Brooklyn College 5

File System Layers: Device
Drivers
• Device drivers manage I/O devices at the

I/O control layer

• Outputs low-level hardware specific commands
to hardware controller

• Example:

• Given commands like “read drive1, cylinder 72, track 2,
sector 10, into memory location 1060” (CHS
addressing) or “read drive1, block 1442, into memory
location 1060” (LBA)

4/18/2019 CUNY | Brooklyn College 6

File System Layers: Basic File
System
• Basic file system

• Given command like “retrieve block 123”
translates to device driver

• Also manages memory buffers and caches
(allocation, freeing, replacement)

• Buffers hold data in transit

• Caches hold frequently used data

4/18/2019 CUNY | Brooklyn College 7

File System Layers: File
Organization Module
• File organization module understands files,

logical address, and physical blocks

• Translates logical block # to physical block #

• Manages free space, disk allocation

4/18/2019 CUNY | Brooklyn College 8

File System Layers: Logical File
System
• Logical file system manages metadata

information

• Translates file name into file number, file
handle, location by maintaining file control blocks
(inodes in UNIX)

• Directory management

• Protection

4/18/2019 CUNY | Brooklyn College 9

File System Layers: Benefits
and Overhead
• Layering useful for reducing complexity and

redundancy

• Duplication of code is minimized.

• The I/O control and sometimes the basic file-system
code can be used by multiple file systems.

• Each file system can then have its own logical file-
system and file-organization modules.

• But layering adds overhead and can decrease
performance

4/18/2019 CUNY | Brooklyn College 10

File Systems: Examples

• Many file systems, sometimes many within an
operating system

• Each with its own format, e.g.,

• CD-ROM is ISO 9660;

• Unix has UFS, FFS;

• Windows has FAT, FAT32, NTFS as well as floppy, CD,
DVD Blu-ray;
Linux has more than 130 types, with extended file
system ext3 and ext4 leading; plus distributed file
systems, etc.)

• New ones still arriving – ZFS, GoogleFS, Oracle ASM,
FUSE

4/18/2019 CUNY | Brooklyn College 11

Questions?

• File system structure and layering

4/18/2019 CUNY | Brooklyn College 12

File-System Operations
• On-disk and in-memory structures

• We have system calls at the API level, but how do we
implement their functions?

• Boot control block contains info needed by system to
boot OS from that volume

• Needed if volume contains OS, usually first block of volume

• Volume control block (superblock, master file table)
contains volume details

• Total # of blocks, # of free blocks, block size, free block
pointers or array

• Directory structure organizes the files

• Names and inode numbers, master file table

4/18/2019 CUNY | Brooklyn College 13

File-System Operations: Control
Blocks
• Boot control block contains info needed by

system to boot OS from that volume

• Needed if volume contains OS, usually first block
of volume

• Volume control block (superblock, master
file table) contains volume details

• Total # of blocks, # of free blocks, block size,
free block pointers or array

4/18/2019 CUNY | Brooklyn College 14

File-System Operations:
Directory Structures
• Directory structure organizes the files

• Names and File Control Block (e.g., inode)
numbers, master file table

4/18/2019 CUNY | Brooklyn College 15

File-System Operations: Per-
File File Control Block
• Per-file File Control Block (FCB) contains

many details about the file

• typically inode number, permissions, size, dates

• NFTS stores into in master file table using
relational DB structures

4/18/2019 CUNY | Brooklyn College 16

In-Memory File System
Structures
• Mount table storing file system mounts, mount

points, file system types

• system-wide open-file table contains a copy of the
FCB of each file and other info

• per-process open-file table contains pointers to
appropriate entries in system-wide open-file table
as well as other info

• Examples: (a) opening file;(b) reading a file

• buffers hold data blocks from secondary storage

• Open returns a file handle for subsequent use

• Data from read eventually copied to specified user process
memory address

4/18/2019 CUNY | Brooklyn College 17

4/18/2019 CUNY | Brooklyn College 18

Directory Implementation

• Linear list of file names with pointer to the data
blocks

• Simple to program

• Time-consuming to execute

• Linear search time

• Could keep ordered alphabetically via linked list or use B+ tree

• Hash Table – linear list with hash data structure

• Decreases directory search time

• Collisions – situations where two file names hash to the
same location

• Only good if entries are fixed size, or use chained-
overflow method

4/18/2019 CUNY | Brooklyn College 19

Questions?

• File system operations and supporting data
structures

• On-disk structures

• In-memory structures

• Directory implementation

4/18/2019 CUNY | Brooklyn College 20

Allocation Methods

• Continuous allocation

• Linked allocation

• Indexed allocation

• Combined scheme

4/18/2019 CUNY | Brooklyn College 21

Allocation Methods: Contiguous

• An allocation method refers to how disk blocks are
allocated for files:

• Contiguous allocation – each file occupies set of
contiguous blocks

• Best performance in most cases

• Simple

• only starting location (block #) and length (number of blocks)
are required

• Problems include

• finding space for file, knowing file size, external fragmentation,
need for compaction off-line (downtime) or on-line

4/18/2019 CUNY | Brooklyn College 22

4/18/2019 CUNY | Brooklyn College 23

• Mapping from logical
to physical

LA/512

Q

R

Block to be accessed = Q +

starting address

Displacement into block = R

Extent-Based Systems

• A modified contiguous allocation scheme
used in many newer file systems (e.g.,
Veritas File System)

• Extent-based file systems allocate disk
blocks in extents

• An extent is a contiguous block of disks

• Extents are allocated for file allocation

• A file consists of one or more extents

4/18/2019 CUNY | Brooklyn College 24

Allocation Methods - Linked

• Linked allocation – each file a linked list of blocks

• File ends at nil pointer

• No external fragmentation

• Each block contains pointer to next block

• No compaction, external fragmentation

• Free space management system called when new block
needed

• Improve efficiency by clustering blocks into groups but
increases internal fragmentation

• Reliability can be a problem

• Locating a block can take many I/Os and disk seeks

4/18/2019 CUNY | Brooklyn College 25

Linked Allocation

• Each file is a linked list of disk blocks: blocks
may be scattered anywhere on the disk

• Mapping

• Block to be accessed is the Qth block in the
linked chain of blocks representing the file.

• Displacement into block = R + 1

4/18/2019 CUNY | Brooklyn College 26

pointerblock =

LA/511

Q

R

4/18/2019 CUNY | Brooklyn College 27

FAT Variation

• FAT (File Allocation Table) variation

• Much like a linked list, but faster on disk and
cacheable

• Beginning of volume has table, indexed by block
number

• New block allocation simple

4/18/2019 CUNY | Brooklyn College 28

File-Allocation Table

4/18/2019 CUNY | Brooklyn College 29

Allocation Methods - Indexed

• Indexed allocation

• Each file has its own index block(s) of pointers
to its data blocks

• Logical view

4/18/2019 CUNY | Brooklyn College 30

index table

4/18/2019 CUNY | Brooklyn College 31

Indexed Allocation

• Need index table

• Random access

• Dynamic access without external
fragmentation, but have overhead of index
block

• Mapping from logical to physical in a file of
maximum size of 256K bytes and block size
of 512 bytes. We need only 1 block for
index table

4/18/2019 CUNY | Brooklyn College 32

LA/512

Q

R

Q = displacement into index table
R = displacement into block

Mapping in Indexed Allocation

• Mapping from logical to physical in a file of
unbounded length (block size of 512 words)

• Linked scheme – Link blocks of index table
(no limit on size)

4/18/2019 CUNY | Brooklyn College 33

LA / (512 x 511)

Q1

R1

Q1 = block of index table

R1 is used as follows:

R1 / 512

Q2

R2

Q2 = displacement into block of index table

R2 displacement into block of file:

• Two-level index (4K blocks could store 1,024
four-byte pointers in outer index →
1,048,567 data blocks and file size of up to
4GB)

4/18/2019 CUNY | Brooklyn College 34

4/18/2019 CUNY | Brooklyn College 35

LA / (512 x 512)

Q1

R1

Q1 = displacement into outer-index

R1 is used as follows:

R1 / 512

Q2

R2

Q2 = displacement into block of index table

R2 displacement into block of file:

4/18/2019 CUNY | Brooklyn College 36

Combined Scheme: UNIX UFS

4/18/2019 CUNY | Brooklyn College 37

More index blocks than can be addressed with 32-bit file pointer

4K bytes per block, 32-bit addresses

Performance
• Best method depends on file access type

• Contiguous great for sequential and random

• Linked good for sequential, not random

• Declare access type at creation -> select either contiguous or linked

• Indexed more complex

• Single block access could require 2 index block reads then data block read

• Clustering can help improve throughput, reduce CPU overhead

• For NVM, no disk head so different algorithms and optimizations
needed

• Using old algorithm uses many CPU cycles trying to avoid non-existent head
movement

• With NVM goal is to reduce CPU cycles and overall path needed for I/O

4/18/2019 CUNY | Brooklyn College 38

Performance

• Adding instructions to the execution path to
save one disk I/O is reasonable

• Intel Core i7 Extreme Edition 990x (2011) at
3.46Ghz = 159,000 MIPS

• http://en.wikipedia.org/wiki/Instructions_per_second

• Typical disk drive at 250 I/Os per second

• 159,000 MIPS / 250 = 630 million instructions during one
disk I/O

• Fast SSD drives provide 60,000 IOPS

• 159,000 MIPS / 60,000 = 2.65 millions instructions during
one disk I/O

4/18/2019 CUNY | Brooklyn College 39

Questions?

• Continuous allocation

• Linked allocation

• Indexed allocation

• Combined scheme

4/18/2019 CUNY | Brooklyn College 40

Free-Space Management

• File system maintains free-space list to
track available blocks/clusters

• (Using term “block” for simplicity)

4/18/2019 CUNY | Brooklyn College 41

Bit Vector/Map

• (n blocks)

4/18/2019 CUNY | Brooklyn College 42

…

0 1 2 n-1

bit[i] =

 1 block[i] free

0 block[i] occupied

Block number calculation

(number of bits per word) *

(number of 0-value words) +

offset of first 1 bit

CPUs have instructions to return offset within word of first “1” bit

• Bit map requires extra space

• Example:

block size = 4KB = 212 bytes

disk size = 240 bytes (1 terabyte)

n = 240/212 = 228 bits (or 32MB)

if clusters of 4 blocks -> 8MB of
memory

• Easy to get contiguous files

4/18/2019 CUNY | Brooklyn College 43

Linked Free Space List on Disk

4/18/2019 CUNY | Brooklyn College 44

• Linked list (free list)

• Cannot get contiguous space
easily

• No waste of space

• No need to traverse the
entire list (if # free blocks
recorded)

Grouping and Counting
• Grouping

• Modify linked list to store address of next n-1 free
blocks in first free block, plus a pointer to next block
that contains free-block-pointers (like this one)

• Counting
• Because space is frequently contiguously used and

freed, with contiguous-allocation allocation, extents,
or clustering

• Keep address of first free block and count of following
free blocks

• Free space list then has entries containing addresses and
counts

4/18/2019 CUNY | Brooklyn College 45

Space Maps
• Used in ZFS

• Consider meta-data I/O on very large file systems
• Full data structures like bit maps couldn’t fit in memory -> thousands

of I/Os

• Divides device space into metaslab units and manages
metaslabs
• Given volume can contain hundreds of metaslabs

• Each metaslab has associated space map
• Uses counting algorithm

• But records to log file rather than file system
• Log of all block activity, in time order, in counting format

• Metaslab activity -> load space map into memory in balanced-
tree structure, indexed by offset
• Replay log into that structure

• Combine contiguous free blocks into single entry
4/18/2019 CUNY | Brooklyn College 46

TRIMing Unused Blocks
• HDDS overwrite in place so need only free list

• Blocks not treated specially when freed
• Keeps its data but without any file pointers to it,

until overwritten

• Storage devices not allowing overwrite (like
NVM) suffer badly with same algorithm
• Must be erased before written, erases made in large

chunks (blocks, composed of pages) and are slow

• TRIM is a newer mechanism for the file system to
inform the NVM storage device that a page is free

• Can be garbage collected or if block is free, now block can
be erased

4/18/2019 CUNY | Brooklyn College 47

Efficiency

• Efficiency dependent on:

• Disk allocation and directory algorithms

• Types of data kept in file’s directory entry

• Pre-allocation or as-needed allocation of
metadata structures

• Fixed-size or varying-size data structures

4/18/2019 CUNY | Brooklyn College 48

Performance

• Performance

• Keeping data and metadata close together

• Buffer cache – separate section of main memory for
frequently used blocks

• Synchronous writes sometimes requested by apps or
needed by OS

• No buffering / caching – writes must hit disk before
acknowledgement

• Asynchronous writes more common, buffer-able, faster

• Free-behind and read-ahead – techniques to optimize
sequential access

• Reads frequently slower than writes

4/18/2019 CUNY | Brooklyn College 49

Page Cache

• A page cache caches pages rather than disk
blocks using virtual memory techniques and
addresses

• Memory-mapped I/O uses a page cache

• Routine I/O through the file system uses
the buffer (disk) cache

4/18/2019 CUNY | Brooklyn College 50

I/O Without a Unified Buffer
Cache

4/18/2019 CUNY | Brooklyn College 51

Unified Buffer Cache

• A unified buffer cache uses the same page
cache to cache both memory-mapped pages
and ordinary file system I/O to avoid double
caching

• But which caches get priority, and what
replacement algorithms to use?

4/18/2019 CUNY | Brooklyn College 52

I/O Using a Unified Buffer
Cache

4/18/2019 CUNY | Brooklyn College 53

Questions?

• Efficiency

• Performance

• Cache

4/18/2019 CUNY | Brooklyn College 54

Recovery

• Consistency checking – compares data in
directory structure with data blocks on disk,
and tries to fix inconsistencies

• Can be slow and sometimes fails

• Use system programs to back up data from
disk to another storage device (magnetic
tape, other magnetic disk, optical)

• Recover lost file or disk by restoring data
from backup

4/18/2019 CUNY | Brooklyn College 55

Log Structured File Systems
• Log structured (or journaling) file systems record each metadata

update to the file system as a transaction

• All transactions are written to a log

• A transaction is considered committed once it is written to the log
(sequentially)

• Sometimes to a separate device or section of disk

• However, the file system may not yet be updated

• The transactions in the log are asynchronously written to the file
system structures

• When the file system structures are modified, the transaction is removed
from the log

• If the file system crashes, all remaining transactions in the log must
still be performed

• Faster recovery from crash, removes chance of inconsistency of
metadata

4/18/2019 CUNY | Brooklyn College 56

Example: WAFL File System

• Used on Network Appliance “Filers” –
distributed file system appliances

• “Write-anywhere file layout”

• Serves up NFS, CIFS, http, ftp

• Random I/O optimized, write optimized

• NVRAM for write caching

• Similar to Berkeley Fast File System, with
extensive modifications

4/18/2019 CUNY | Brooklyn College 57

The WAFL File Layout

4/18/2019 CUNY | Brooklyn College 58

Snapshots in
WAFL

4/18/2019 CUNY | Brooklyn College 59

Questions?

• Recovery

• Log structured file systems

• WAFL

4/18/2019 CUNY | Brooklyn College 60

