CISC 3320 C27b Mass Storage: NVM and Others

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

Acknowledgement

 These slides are a revision of the slides provided by the authors of the textbook via the publisher of the textbook

Memory Hierarchy

Outline

- NVM Scheduling
- Volatile memory and tape drives
- Error Detection and Correction
- Storage Device Management
- Swap-Space Management
- Storage Attachment
- RAID Structure

Overview of Mass Storage Devices

- Bulk of secondary storage for modern computers are
 - Hard disk drives (HDDs)
 - Nonvolatile memory (NVM) devices
- Frequently used as a mass storage device
 - Volatile memory
- Once used as a secondary storage
 - Magnetic tapes

Nonvolatile Memory Devices

NVM Devices Characteristics

- Have different forms
 - If disk-drive like, then called solid-state disks (SSDs)
 - Other forms include USB drives (thumb drive, flash drive), DRAM disk replacements, surface-mounted on motherboards, and main storage in devices like smartphones
- Can be more reliable than HDDs
- Maybe have shorter life span need careful management
- Less capacity
- But much faster
- Buses can be too slow -> connect directly to PCI for example
- No moving parts, so no seek time or rotational latency 4/11/2019 CUNY | Brooklyn College

Issues with NVM Devices

- Have characteristics that present challenges
- Read and written in "page" increments (akin to sector) but can't overwrite in place
- To overwrite, must first be erased, and erases happen in larger "block" increments
- Can only be erased a limited number of times before worn out (~ 100,000 times)
- Life span measured in drive writes per day (DWPD)
 - A 1TB NAND drive with rating of 5DWPD is expected to have 5TB per day written within warrantee period without failing

NAND Flash Controller Algorithms

- With no overwrite, pages end up with mix of valid and invalid data
- To track which logical blocks are valid, controller maintains flash translation layer (FTL) table
- Also implements garbage collection to free invalid page space
- Allocates overprovisioning to provide working space for GC
- Each cell has lifespan, so wear leveling needed to write equally to all cells

FTL									
logical physical address									
1									
2									
3									
4									
5									
6									
7									
8									

1	2	3	4
empty	empty	empty	empty
page	page	page	page
empty	empty	empty	empty
page	page	page	page
5	6	7	8

1. assume eight pages in one block of NAND flash storage, not yet written to

1	2	3	4		
empty	empty	empty	empty		
page	page	page	page		
empty	empty	empty	empty		
page	page	page	page		
5	6	7	8		

 physical page 1 chosen, logical page 1 written to flash physical page 1

physical page 2 chosen and written to

physical page 1 would have been marked invalid

and data would have been garbage collected

NAND block with Valid and Invalid pages: Example

valid	valid	invalid	invalid		
page	page	page	page		
invalid	valid	invalid	valid		
page	page	page	page		

NAND block with valid and invalid pages

Write Amplification

- NVM writes are slow (when compared to reads)
 - As time goes on, a write of n bytes data requires efforts equivalent to a write of m bytes and m >> n
- Because we cannot overwrite pages in NVM, and must erase a whole block before writing to an invalid page

Write Amplification: Example

• Consider a 8 page block, each 4KB

- and the following I/O operation sequence
 - Write file A of 4 KB (1 pages)
 - Write file B of 16 KB (4 pages)
 - Erase file A
 - Write file C of 16 KB (4 pages)

- Write file A of 4 KB (1 pages)
- Write file B of 16 KB (4 pages) A B B B B B
- Erase file A

- Write file C of 16 KB (4 pages)
 - ???

On NVM

- Write file C of 16 KB (4 pages)
 - First load whole block to primary memory
 - Read 4+ pages
 - Modify the in-memory block

In memory	С	В	В	В	В	С	С	С	
-----------	---	---	---	---	---	---	---	---	--

- Erase the whole block on the NVM
 - Erase the whole block (8 pages)
- Write the block back to the NVM (8 pages)

Write Amplification: Example: Pages Written

- To write
 - A, B, and C: 1 + 4 + 4 = 9 pages
- We must
 - Write 1 + 4 + 8 = 13 pages
 - (Read 4 pages and erase 8 pages)
- As the NVM fills up and files get written / modified / deleted, writes are amplified

NVM and HDD Comparison

- NVM best at random and parallel I/O, HDD at sequential
 - NVM have much higher Input/Output operations per Second (IOPS) (hundreds of thousands vs hundreds)
 - have no moving parts, so no seek time or rotational latency
 - have much smaller random read latency,
 - are great at small writes, and
 - are great at parallel read/write
 - for which HDDs don't do well
- NVMs and HDDs can have similar throughput

Issues with NVMs

- No disk heads or rotational latency but still room for optimization
- The observed behavior of NVM devices
 - the time required to service reads is uniform, but write service time is not uniform.
 - write amplification (one write, causing garbage collection and many read/writes) can decrease the performance advantage of NVMs (when compared to HDDs)

NVM Scheduling

- No disk heads or rotational latency but still room for optimization, e.g.,
 - The controller keeps writing on the NVM until full before it attempts any rewrite/overwrite
 - The OS can, in the background, clean up block with invalid/empty pages so that they're easily writable when needed
- Considering the observation
 - the time required to service reads is uniform, but write service time is not uniform.
 - Some SSD schedulers have exploited this property and merge only adjacent write requests, servicing all read requests in FCFS order.
- Example
 - In RHEL 7 NOOP (no scheduling) is used for NVMs but adjacent LBA requests are combined

Questions?

- NVMs and characteristics of NVMs
- Comparisons of NVMs and HDDs
- Issues with NVM
 - Can we optimize NVM?
 - NVM Scheduling?

Volatile Memory

- DRAM frequently used as mass-storage device
 - Not technically secondary storage because volatile, but can have file systems, be used like very fast secondary storage
- RAM drives (with many names, including RAM disks) present as raw block devices, commonly file system formatted

Why RAM Disks?

- Computers have buffering, caching via RAM, so why RAM drives?
 - Caches / buffers allocated / managed by programmer, operating system, hardware
 - RAM drives under user control
 - Found in all major operating systems
 - Linux /dev/ram, macOS diskutil to create them, Linux /tmp of file system type tmpfs
- Used as high speed temporary storage
 - Programs could share bulk date, quickly, by reading/writing to RAM drive

RAM Disk Example

On Linux

mkdir ramdisk

mount -t tmpfs -o size=5m tmpfs ramdisk

Magnetic Tape

- Nonvolatile, hold large quantities of data
- Used as an early secondary-storage medium.
- Its access time is slow compared with that of main memory and drives.
- Serve as backup/tertiary storage nowadays

Use of Magnetic Tape: Example

<u>https://www.youtube.</u>
<u>com/watch?v=avP5d1</u>
<u>6wEp0#t=01m09s</u>

	🦃 3.5 HDD DAT/	🥏 Book	.fm - 1	00	6	seek tin	ne wes	G w	esterr	n digita	B Blo	oomberg.co
or	g/computing/hardv	vare/why-	the-fu	iture	-of-o	data-st	orag	809	6	(∂ ☆	Q Search
		iPad \$	768 ×	1024	6B3	DPR: 2 \$	No thr	ottling 🕈 🤞	5			
1		RUM	Тор	ics 🔻		Report	S •	Blogs	•	Multin	nedia 🔻	Magazine •

Why the Future of Data Storage is (Still) Magnetic Tape

Disk drives are reaching their limits, but magnetic tape just gets better and better

By Mark Lantz

Questions

- Characteristics, performances, and issues of HDD
- Characteristics, performances, and issues of NVM
- Characteristics, performances, and issues of RAM Disks
- Characteristics, performances, and issues of magnetic tapes