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Outline

• Deadlock Avoidance

• by carefully allocating (non-sharable) resources

• Deadlock Detection 

• Recovery from Deadlock
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Deadlock Avoidance

• Carefully allocates (non-sharable) resources 

• The deadlock-avoidance algorithm dynamically 
examines the resource-allocation state to ensure 
that there can never be a circular-wait condition, 
i.e., in a safe state
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Information Known A Priori

• Requires that the system has some 
additional a priori information 
available

• Simplest and most useful model requires that 
each process declare the maximum number of 
resources of each type that it may need
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Resource-Allocation State

• Resources available (the numbers  of 
instances of and the types of resources 
available)

• Resource allocated (the numbers of 
instances of and the types of resources 
allocated)

• Maximum demands (the number of instances 
of and types)  of resources of the threads
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Define Safe State

• System is in safe state if there exists a 
sequence <P1, P2, …, Pn> of ALL the  processes  
in the systems such that  for each Pi, the 
resources that Pi can still request can be 
satisfied by currently available resources + 
resources held by all the Pj, with j < I
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Define Safe State: Scenarios

• That is:

• If Pi resource needs are not immediately 
available, then Pi can wait until all Pj have 
finished

• When Pj is finished, Pi can obtain needed 
resources, execute, return allocated resources, 
and terminate

• When Pi terminates, Pi +1 can obtain its needed 
resources, and so on 

3/28/2019 CUNY | Brooklyn College 8



Resource Trajectory 
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Safe and Unsafe State

• Safe state

• The system can allocate resources to each 
process in some order and still avoid a deadlock

• A safe state is not a deadlocked state

• Unsafe state

• A deadlocked state is an unsafe state

• An unsafe state may not be a deadlock state

• An unsafe state is a state that may lead to a 
deadlock
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Safe State: Example

• A resources has 10 instances

• Does exist a scheduling order of processes A, B, C, 
and allow all of them to complete?

• The following sequence shows that (a) is safe 
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Unsafe State: Example

• A resources has 10 instances

• Does exist a scheduling order of processes A, B, C, 
and allow all of them to complete?

• (b) is unsafe: you can run B to completion, but no sufficient 
resources for A or C to complete
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Safe State and Deadlocks

• If a system is in safe state  no deadlocks

• If a system is in unsafe state  possibility 
of deadlock

• Avoidance  ensure that a system will never 
enter an unsafe state.
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Safe, Unsafe, Deadlock State
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Deadlock Avoidance Algorithms

• If the system enters an unsafe state when 
the system grants the resource request

• Single instance of a resource type

• Use a resource-allocation graph

• Multiple instances of a resource type

• Use the Banker’s Algorithm
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Questions?

• Deadlock avoidance 

• Resource allocation

• Resource allocation state

• Safe and unsafe sates

• When to use? 

• The resource allocation graph

• The Banker’s algorithm
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Resource-Allocation Graph 
Scheme
• Claim edge Pi --> Rj indicated that process Pj may 

request resource Rj; represented by a dashed line 

• Claim edge converts to request edge Pi → Rj when a 
process requests a resource

• Request edge converted to an assignment edge Pi 

Rj when the  resource is allocated to the process

• When a resource is released by a process, 
assignment edge reconverts to a claim edge

• Resources must be claimed a priori in the system
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Resource-Allocation Graph 
Scheme: Example
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Resource Allocation Graph 
Algorithm:
• Suppose that process Pi requests a resource Rj

• The request can be granted only if converting 
the request edge to an assignment edge does 
not result in the formation of a cycle in the 
resource allocation graph

• For each node in the graph if the request granted,

• Do a depth first search, check if cycle exists

• Complexity of the algorithm: O(N2) (N: the number 
of processes)
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Questions?

• Single instance of resources

• Resource allocation graph algorithm

• Safe and unsafe state? 

• How about a resource has multiple 
instances? 
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Banker’s Algorithm: 
Assumptions
• Multiple instances of resources

• Each process must a priori claim maximum 
use

• When a process requests a resource it may 
have to wait  

• When a process gets all its resources it 
must return them in a finite amount of time
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Data Structures for the 
Banker’s Algorithm
• Let n = number of processes, and m = number of 

resources types.

• Available: Vector of length m. If available [j] = k, there 
are k instances of resource type Rj available

• Max: n x m matrix.  If Max [i,j] = k, then process Pi may 
request at most k instances of resource type Rj

• Allocation:  n x m matrix.  If Allocation[i,j] = k then Pi is 
currently allocated k instances of Rj

• Need:  n x m matrix. If Need[i,j] = k, then Pi may need k
more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]
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Safety Algorithm
1. Let Work and Finish be vectors of length m and n, 

respectively.  Initialize
Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both
(a) Finish [i] = false

(b) Needi  Work

If no such i exists, go to step 4

3. Work = Work + Allocationi

Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a 
safe state
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Resource-Request Algorithm for 
Process Pi
Requesti = request vector for process Pi.  If Requesti [j] = 
k then process Pi wants k instances of resource type Rj

1. If Requesti  Needi go to step 2.  Otherwise, raise error 
condition, since process has exceeded its maximum claim

2.If Requesti  Available, go to step 3.  Otherwise Pi must 
wait, since resources are not available

3.Pretend to allocate requested resources to Pi by modifying 
the state as follows:

Available = Available  – Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

If safe  the resources are allocated to Pi

If unsafe  Pi must wait, and the old resource-allocation state is 
restored
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Banker’s Algorithm for Multiple 
Resources
1. Look for a row in R (i.e., Need), whose unmet 

resource needs are all smaller than or equal to A 
(i.e., Available). If no such row exists, system will 
eventually deadlock.

2. Assume the process of row chosen requests all 
resources needed and finishes. Mark that process 
as terminated, add its resources to the A vector.

3. Repeat steps 1 and 2 until either all processes are 
marked terminated (safe state)  or no process is 
left whose resource needs can be met (deadlock)
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Banker’s Algorithm: Example
• 5 processes P0  through P4; 

3 resource types:

A (10 instances),  B (5 instances), and C (7 instances)

• Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2  

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3
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• The content of the matrix Need is defined to be Max – Allocation

Need

A B C

P0 7 4 3 

P1 1 2 2 

P2 6 0 0 

P3 0 1 1

P4 4 3 1 

• The system is in a safe state since the sequence < P1, P3, P4, P2, P0> 
satisfies safety criteria
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Example:  P1 Request (1,0,2)
• Check that Request  Available (that is, (1,0,2)  (3,3,2)  true

Allocation Need Available

A B C A B C A B C 

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2                  0 2 0 

P2 3 0 2 6 0 0 

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1 

• Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2> satisfies safety 
requirement

• Can request for (3,3,0) by P4 be granted?

• Can request for (0,2,0) by P0 be granted?

3/28/2019 CUNY | Brooklyn College 28



Questions?

• When to use the Banker’s algorithm?

• Data structures?

• Algorithm?
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