
CISC 3320

C24c Deadlock Avoidance
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

3/28/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides
provided by the authors of the textbook via
the publisher of the textbook

3/28/2019 CUNY | Brooklyn College 2

Outline

• Deadlock Avoidance

• by carefully allocating (non-sharable) resources

• Deadlock Detection

• Recovery from Deadlock

3/28/2019 CUNY | Brooklyn College 3

Deadlock Avoidance

• Carefully allocates (non-sharable) resources

• The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to ensure
that there can never be a circular-wait condition,
i.e., in a safe state

3/28/2019 CUNY | Brooklyn College 4

Information Known A Priori

• Requires that the system has some
additional a priori information
available

• Simplest and most useful model requires that
each process declare the maximum number of
resources of each type that it may need

3/28/2019 CUNY | Brooklyn College 5

Resource-Allocation State

• Resources available (the numbers of
instances of and the types of resources
available)

• Resource allocated (the numbers of
instances of and the types of resources
allocated)

• Maximum demands (the number of instances
of and types) of resources of the threads

3/28/2019 CUNY | Brooklyn College 6

Define Safe State

• System is in safe state if there exists a
sequence <P1, P2, …, Pn> of ALL the processes
in the systems such that for each Pi, the
resources that Pi can still request can be
satisfied by currently available resources +
resources held by all the Pj, with j < I

3/28/2019 CUNY | Brooklyn College 7

Define Safe State: Scenarios

• That is:

• If Pi resource needs are not immediately
available, then Pi can wait until all Pj have
finished

• When Pj is finished, Pi can obtain needed
resources, execute, return allocated resources,
and terminate

• When Pi terminates, Pi +1 can obtain its needed
resources, and so on

3/28/2019 CUNY | Brooklyn College 8

Resource Trajectory

4/12/2018 CUNY | Brooklyn College 9

• [Figure 6-8 in Tanenbaum & Bos, 2014]

Safe and Unsafe State

• Safe state

• The system can allocate resources to each
process in some order and still avoid a deadlock

• A safe state is not a deadlocked state

• Unsafe state

• A deadlocked state is an unsafe state

• An unsafe state may not be a deadlock state

• An unsafe state is a state that may lead to a
deadlock

4/12/2018 CUNY | Brooklyn College 10

Safe State: Example

• A resources has 10 instances

• Does exist a scheduling order of processes A, B, C,
and allow all of them to complete?

• The following sequence shows that (a) is safe

4/12/2018 CUNY | Brooklyn College 11

Unsafe State: Example

• A resources has 10 instances

• Does exist a scheduling order of processes A, B, C,
and allow all of them to complete?

• (b) is unsafe: you can run B to completion, but no sufficient
resources for A or C to complete

4/12/2018 CUNY | Brooklyn College 12

Safe State and Deadlocks

• If a system is in safe state no deadlocks

• If a system is in unsafe state possibility
of deadlock

• Avoidance ensure that a system will never
enter an unsafe state.

3/28/2019 CUNY | Brooklyn College 13

Safe, Unsafe, Deadlock State

3/28/2019 CUNY | Brooklyn College 14

Deadlock Avoidance Algorithms

• If the system enters an unsafe state when
the system grants the resource request

• Single instance of a resource type

• Use a resource-allocation graph

• Multiple instances of a resource type

• Use the Banker’s Algorithm

3/28/2019 CUNY | Brooklyn College 15

Questions?

• Deadlock avoidance

• Resource allocation

• Resource allocation state

• Safe and unsafe sates

• When to use?

• The resource allocation graph

• The Banker’s algorithm

3/28/2019 CUNY | Brooklyn College 16

Resource-Allocation Graph
Scheme
• Claim edge Pi --> Rj indicated that process Pj may

request resource Rj; represented by a dashed line

• Claim edge converts to request edge Pi → Rj when a
process requests a resource

• Request edge converted to an assignment edge Pi

Rj when the resource is allocated to the process

• When a resource is released by a process,
assignment edge reconverts to a claim edge

• Resources must be claimed a priori in the system

3/28/2019 CUNY | Brooklyn College 17

Resource-Allocation Graph
Scheme: Example

3/28/2019 CUNY | Brooklyn College 18

Resource Allocation Graph
Algorithm:
• Suppose that process Pi requests a resource Rj

• The request can be granted only if converting
the request edge to an assignment edge does
not result in the formation of a cycle in the
resource allocation graph

• For each node in the graph if the request granted,

• Do a depth first search, check if cycle exists

• Complexity of the algorithm: O(N2) (N: the number
of processes)

3/28/2019 CUNY | Brooklyn College 19

Questions?

• Single instance of resources

• Resource allocation graph algorithm

• Safe and unsafe state?

• How about a resource has multiple
instances?

3/28/2019 CUNY | Brooklyn College 20

Banker’s Algorithm:
Assumptions
• Multiple instances of resources

• Each process must a priori claim maximum
use

• When a process requests a resource it may
have to wait

• When a process gets all its resources it
must return them in a finite amount of time

3/28/2019 CUNY | Brooklyn College 21

Data Structures for the
Banker’s Algorithm
• Let n = number of processes, and m = number of

resources types.

• Available: Vector of length m. If available [j] = k, there
are k instances of resource type Rj available

• Max: n x m matrix. If Max [i,j] = k, then process Pi may
request at most k instances of resource type Rj

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi is
currently allocated k instances of Rj

• Need: n x m matrix. If Need[i,j] = k, then Pi may need k
more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

3/28/2019 CUNY | Brooklyn College 22

Safety Algorithm
1. Let Work and Finish be vectors of length m and n,

respectively. Initialize
Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both
(a) Finish [i] = false

(b) Needi Work

If no such i exists, go to step 4

3. Work = Work + Allocationi

Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a
safe state

3/28/2019 CUNY | Brooklyn College 23

Resource-Request Algorithm for
Process Pi
Requesti = request vector for process Pi. If Requesti [j] =
k then process Pi wants k instances of resource type Rj

1. If Requesti Needi go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim

2.If Requesti Available, go to step 3. Otherwise Pi must
wait, since resources are not available

3.Pretend to allocate requested resources to Pi by modifying
the state as follows:

Available = Available – Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

If safe the resources are allocated to Pi

If unsafe Pi must wait, and the old resource-allocation state is
restored

3/28/2019 CUNY | Brooklyn College 24

Banker’s Algorithm for Multiple
Resources
1. Look for a row in R (i.e., Need), whose unmet

resource needs are all smaller than or equal to A
(i.e., Available). If no such row exists, system will
eventually deadlock.

2. Assume the process of row chosen requests all
resources needed and finishes. Mark that process
as terminated, add its resources to the A vector.

3. Repeat steps 1 and 2 until either all processes are
marked terminated (safe state) or no process is
left whose resource needs can be met (deadlock)

4/12/2018 CUNY | Brooklyn College 25

Banker’s Algorithm: Example
• 5 processes P0 through P4;

3 resource types:

A (10 instances), B (5 instances), and C (7 instances)

• Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

3/28/2019 CUNY | Brooklyn College 26

• The content of the matrix Need is defined to be Max – Allocation

Need

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

• The system is in a safe state since the sequence < P1, P3, P4, P2, P0>
satisfies safety criteria

3/28/2019 CUNY | Brooklyn College 27

Example: P1 Request (1,0,2)
• Check that Request Available (that is, (1,0,2) (3,3,2) true

Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

• Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2> satisfies safety
requirement

• Can request for (3,3,0) by P4 be granted?

• Can request for (0,2,0) by P0 be granted?

3/28/2019 CUNY | Brooklyn College 28

Questions?

• When to use the Banker’s algorithm?

• Data structures?

• Algorithm?

3/28/2019 CUNY | Brooklyn College 29

