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Outline

• Deadlock Avoidance

• by carefully allocating (non-sharable) resources

• Deadlock Detection 

• Recovery from Deadlock
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Deadlock Avoidance

• Carefully allocates (non-sharable) resources 

• The deadlock-avoidance algorithm dynamically 
examines the resource-allocation state to ensure 
that there can never be a circular-wait condition, 
i.e., in a safe state
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Information Known A Priori

• Requires that the system has some 
additional a priori information 
available

• Simplest and most useful model requires that 
each process declare the maximum number of 
resources of each type that it may need
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Resource-Allocation State

• Resources available (the numbers  of 
instances of and the types of resources 
available)

• Resource allocated (the numbers of 
instances of and the types of resources 
allocated)

• Maximum demands (the number of instances 
of and types)  of resources of the threads
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Define Safe State

• System is in safe state if there exists a 
sequence <P1, P2, …, Pn> of ALL the  processes  
in the systems such that  for each Pi, the 
resources that Pi can still request can be 
satisfied by currently available resources + 
resources held by all the Pj, with j < I
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Define Safe State: Scenarios

• That is:

• If Pi resource needs are not immediately 
available, then Pi can wait until all Pj have 
finished

• When Pj is finished, Pi can obtain needed 
resources, execute, return allocated resources, 
and terminate

• When Pi terminates, Pi +1 can obtain its needed 
resources, and so on 
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Resource Trajectory 

4/12/2018 CUNY | Brooklyn College 9

• [Figure 6-8 in Tanenbaum & Bos, 2014]



Safe and Unsafe State

• Safe state

• The system can allocate resources to each 
process in some order and still avoid a deadlock

• A safe state is not a deadlocked state

• Unsafe state

• A deadlocked state is an unsafe state

• An unsafe state may not be a deadlock state

• An unsafe state is a state that may lead to a 
deadlock
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Safe State: Example

• A resources has 10 instances

• Does exist a scheduling order of processes A, B, C, 
and allow all of them to complete?

• The following sequence shows that (a) is safe 
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Unsafe State: Example

• A resources has 10 instances

• Does exist a scheduling order of processes A, B, C, 
and allow all of them to complete?

• (b) is unsafe: you can run B to completion, but no sufficient 
resources for A or C to complete
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Safe State and Deadlocks

• If a system is in safe state  no deadlocks

• If a system is in unsafe state  possibility 
of deadlock

• Avoidance  ensure that a system will never 
enter an unsafe state.
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Safe, Unsafe, Deadlock State
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Deadlock Avoidance Algorithms

• If the system enters an unsafe state when 
the system grants the resource request

• Single instance of a resource type

• Use a resource-allocation graph

• Multiple instances of a resource type

• Use the Banker’s Algorithm
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Questions?

• Deadlock avoidance 

• Resource allocation

• Resource allocation state

• Safe and unsafe sates

• When to use? 

• The resource allocation graph

• The Banker’s algorithm
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Resource-Allocation Graph 
Scheme
• Claim edge Pi --> Rj indicated that process Pj may 

request resource Rj; represented by a dashed line 

• Claim edge converts to request edge Pi → Rj when a 
process requests a resource

• Request edge converted to an assignment edge Pi 

Rj when the  resource is allocated to the process

• When a resource is released by a process, 
assignment edge reconverts to a claim edge

• Resources must be claimed a priori in the system
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Resource-Allocation Graph 
Scheme: Example
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Resource Allocation Graph 
Algorithm:
• Suppose that process Pi requests a resource Rj

• The request can be granted only if converting 
the request edge to an assignment edge does 
not result in the formation of a cycle in the 
resource allocation graph

• For each node in the graph if the request granted,

• Do a depth first search, check if cycle exists

• Complexity of the algorithm: O(N2) (N: the number 
of processes)
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Questions?

• Single instance of resources

• Resource allocation graph algorithm

• Safe and unsafe state? 

• How about a resource has multiple 
instances? 
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Banker’s Algorithm: 
Assumptions
• Multiple instances of resources

• Each process must a priori claim maximum 
use

• When a process requests a resource it may 
have to wait  

• When a process gets all its resources it 
must return them in a finite amount of time
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Data Structures for the 
Banker’s Algorithm
• Let n = number of processes, and m = number of 

resources types.

• Available: Vector of length m. If available [j] = k, there 
are k instances of resource type Rj available

• Max: n x m matrix.  If Max [i,j] = k, then process Pi may 
request at most k instances of resource type Rj

• Allocation:  n x m matrix.  If Allocation[i,j] = k then Pi is 
currently allocated k instances of Rj

• Need:  n x m matrix. If Need[i,j] = k, then Pi may need k
more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]
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Safety Algorithm
1. Let Work and Finish be vectors of length m and n, 

respectively.  Initialize
Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both
(a) Finish [i] = false

(b) Needi  Work

If no such i exists, go to step 4

3. Work = Work + Allocationi

Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a 
safe state
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Resource-Request Algorithm for 
Process Pi
Requesti = request vector for process Pi.  If Requesti [j] = 
k then process Pi wants k instances of resource type Rj

1. If Requesti  Needi go to step 2.  Otherwise, raise error 
condition, since process has exceeded its maximum claim

2.If Requesti  Available, go to step 3.  Otherwise Pi must 
wait, since resources are not available

3.Pretend to allocate requested resources to Pi by modifying 
the state as follows:

Available = Available  – Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

If safe  the resources are allocated to Pi

If unsafe  Pi must wait, and the old resource-allocation state is 
restored
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Banker’s Algorithm for Multiple 
Resources
1. Look for a row in R (i.e., Need), whose unmet 

resource needs are all smaller than or equal to A 
(i.e., Available). If no such row exists, system will 
eventually deadlock.

2. Assume the process of row chosen requests all 
resources needed and finishes. Mark that process 
as terminated, add its resources to the A vector.

3. Repeat steps 1 and 2 until either all processes are 
marked terminated (safe state)  or no process is 
left whose resource needs can be met (deadlock)
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Banker’s Algorithm: Example
• 5 processes P0  through P4; 

3 resource types:

A (10 instances),  B (5 instances), and C (7 instances)

• Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2  

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3
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• The content of the matrix Need is defined to be Max – Allocation

Need

A B C

P0 7 4 3 

P1 1 2 2 

P2 6 0 0 

P3 0 1 1

P4 4 3 1 

• The system is in a safe state since the sequence < P1, P3, P4, P2, P0> 
satisfies safety criteria
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Example:  P1 Request (1,0,2)
• Check that Request  Available (that is, (1,0,2)  (3,3,2)  true

Allocation Need Available

A B C A B C A B C 

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2                  0 2 0 

P2 3 0 2 6 0 0 

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1 

• Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2> satisfies safety 
requirement

• Can request for (3,3,0) by P4 be granted?

• Can request for (0,2,0) by P0 be granted?
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Questions?

• When to use the Banker’s algorithm?

• Data structures?

• Algorithm?
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