
CISC 3320

C24c Deadlock Avoidance
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

3/28/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides
provided by the authors of the textbook via
the publisher of the textbook

3/28/2019 CUNY | Brooklyn College 2

Outline

• Deadlock Avoidance

• by carefully allocating (non-sharable) resources

• Deadlock Detection

• Recovery from Deadlock

3/28/2019 CUNY | Brooklyn College 3

Deadlock Avoidance

• Carefully allocates (non-sharable) resources

• The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to ensure
that there can never be a circular-wait condition,
i.e., in a safe state

3/28/2019 CUNY | Brooklyn College 4

Information Known A Priori

• Requires that the system has some
additional a priori information
available

• Simplest and most useful model requires that
each process declare the maximum number of
resources of each type that it may need

3/28/2019 CUNY | Brooklyn College 5

Resource-Allocation State

• Resources available (the numbers of
instances of and the types of resources
available)

• Resource allocated (the numbers of
instances of and the types of resources
allocated)

• Maximum demands (the number of instances
of and types) of resources of the threads

3/28/2019 CUNY | Brooklyn College 6

Define Safe State

• System is in safe state if there exists a
sequence <P1, P2, …, Pn> of ALL the processes
in the systems such that for each Pi, the
resources that Pi can still request can be
satisfied by currently available resources +
resources held by all the Pj, with j < I

3/28/2019 CUNY | Brooklyn College 7

Define Safe State: Scenarios

• That is:

• If Pi resource needs are not immediately
available, then Pi can wait until all Pj have
finished

• When Pj is finished, Pi can obtain needed
resources, execute, return allocated resources,
and terminate

• When Pi terminates, Pi +1 can obtain its needed
resources, and so on

3/28/2019 CUNY | Brooklyn College 8

Resource Trajectory

4/12/2018 CUNY | Brooklyn College 9

• [Figure 6-8 in Tanenbaum & Bos, 2014]

Safe and Unsafe State

• Safe state

• The system can allocate resources to each
process in some order and still avoid a deadlock

• A safe state is not a deadlocked state

• Unsafe state

• A deadlocked state is an unsafe state

• An unsafe state may not be a deadlock state

• An unsafe state is a state that may lead to a
deadlock

4/12/2018 CUNY | Brooklyn College 10

Safe State: Example

• A resources has 10 instances

• Does exist a scheduling order of processes A, B, C,
and allow all of them to complete?

• The following sequence shows that (a) is safe

4/12/2018 CUNY | Brooklyn College 11

Unsafe State: Example

• A resources has 10 instances

• Does exist a scheduling order of processes A, B, C,
and allow all of them to complete?

• (b) is unsafe: you can run B to completion, but no sufficient
resources for A or C to complete

4/12/2018 CUNY | Brooklyn College 12

Safe State and Deadlocks

• If a system is in safe state  no deadlocks

• If a system is in unsafe state  possibility
of deadlock

• Avoidance  ensure that a system will never
enter an unsafe state.

3/28/2019 CUNY | Brooklyn College 13

Safe, Unsafe, Deadlock State

3/28/2019 CUNY | Brooklyn College 14

Deadlock Avoidance Algorithms

• If the system enters an unsafe state when
the system grants the resource request

• Single instance of a resource type

• Use a resource-allocation graph

• Multiple instances of a resource type

• Use the Banker’s Algorithm

3/28/2019 CUNY | Brooklyn College 15

Questions?

• Deadlock avoidance

• Resource allocation

• Resource allocation state

• Safe and unsafe sates

• When to use?

• The resource allocation graph

• The Banker’s algorithm

3/28/2019 CUNY | Brooklyn College 16

Resource-Allocation Graph
Scheme
• Claim edge Pi --> Rj indicated that process Pj may

request resource Rj; represented by a dashed line

• Claim edge converts to request edge Pi → Rj when a
process requests a resource

• Request edge converted to an assignment edge Pi 

Rj when the resource is allocated to the process

• When a resource is released by a process,
assignment edge reconverts to a claim edge

• Resources must be claimed a priori in the system

3/28/2019 CUNY | Brooklyn College 17

Resource-Allocation Graph
Scheme: Example

3/28/2019 CUNY | Brooklyn College 18

Resource Allocation Graph
Algorithm:
• Suppose that process Pi requests a resource Rj

• The request can be granted only if converting
the request edge to an assignment edge does
not result in the formation of a cycle in the
resource allocation graph

• For each node in the graph if the request granted,

• Do a depth first search, check if cycle exists

• Complexity of the algorithm: O(N2) (N: the number
of processes)

3/28/2019 CUNY | Brooklyn College 19

Questions?

• Single instance of resources

• Resource allocation graph algorithm

• Safe and unsafe state?

• How about a resource has multiple
instances?

3/28/2019 CUNY | Brooklyn College 20

Banker’s Algorithm:
Assumptions
• Multiple instances of resources

• Each process must a priori claim maximum
use

• When a process requests a resource it may
have to wait

• When a process gets all its resources it
must return them in a finite amount of time

3/28/2019 CUNY | Brooklyn College 21

Data Structures for the
Banker’s Algorithm
• Let n = number of processes, and m = number of

resources types.

• Available: Vector of length m. If available [j] = k, there
are k instances of resource type Rj available

• Max: n x m matrix. If Max [i,j] = k, then process Pi may
request at most k instances of resource type Rj

• Allocation: n x m matrix. If Allocation[i,j] = k then Pi is
currently allocated k instances of Rj

• Need: n x m matrix. If Need[i,j] = k, then Pi may need k
more instances of Rj to complete its task

Need [i,j] = Max[i,j] – Allocation [i,j]

3/28/2019 CUNY | Brooklyn College 22

Safety Algorithm
1. Let Work and Finish be vectors of length m and n,

respectively. Initialize
Work = Available

Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both
(a) Finish [i] = false

(b) Needi  Work

If no such i exists, go to step 4

3. Work = Work + Allocationi

Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in a
safe state

3/28/2019 CUNY | Brooklyn College 23

Resource-Request Algorithm for
Process Pi
Requesti = request vector for process Pi. If Requesti [j] =
k then process Pi wants k instances of resource type Rj

1. If Requesti  Needi go to step 2. Otherwise, raise error
condition, since process has exceeded its maximum claim

2.If Requesti  Available, go to step 3. Otherwise Pi must
wait, since resources are not available

3.Pretend to allocate requested resources to Pi by modifying
the state as follows:

Available = Available – Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;

If safe  the resources are allocated to Pi

If unsafe  Pi must wait, and the old resource-allocation state is
restored

3/28/2019 CUNY | Brooklyn College 24

Banker’s Algorithm for Multiple
Resources
1. Look for a row in R (i.e., Need), whose unmet

resource needs are all smaller than or equal to A
(i.e., Available). If no such row exists, system will
eventually deadlock.

2. Assume the process of row chosen requests all
resources needed and finishes. Mark that process
as terminated, add its resources to the A vector.

3. Repeat steps 1 and 2 until either all processes are
marked terminated (safe state) or no process is
left whose resource needs can be met (deadlock)

4/12/2018 CUNY | Brooklyn College 25

Banker’s Algorithm: Example
• 5 processes P0 through P4;

3 resource types:

A (10 instances), B (5 instances), and C (7 instances)

• Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

3/28/2019 CUNY | Brooklyn College 26

• The content of the matrix Need is defined to be Max – Allocation

Need

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0

P3 0 1 1

P4 4 3 1

• The system is in a safe state since the sequence < P1, P3, P4, P2, P0>
satisfies safety criteria

3/28/2019 CUNY | Brooklyn College 27

Example: P1 Request (1,0,2)
• Check that Request  Available (that is, (1,0,2)  (3,3,2)  true

Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 2 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

• Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2> satisfies safety
requirement

• Can request for (3,3,0) by P4 be granted?

• Can request for (0,2,0) by P0 be granted?

3/28/2019 CUNY | Brooklyn College 28

Questions?

• When to use the Banker’s algorithm?

• Data structures?

• Algorithm?

3/28/2019 CUNY | Brooklyn College 29

