
CISC 3320

C22b Process
Synchronization: OS

Examples
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

3/28/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides
provided by the authors of the textbook via
the publisher of the textbook

3/28/2019 CUNY | Brooklyn College 2

Outline

• Synchronization within the kernel

• Windows

• Linux

• POSIX

• Java

• Alternative Approaches

3/28/2019 CUNY | Brooklyn College 3

Windows Kernel
Synchronization
• Uses interrupt masks to protect access to

global resources on uniprocessor systems

• Uses spinlocks on multiprocessor systems

• Spinlocking-thread will never be preempted

3/28/2019 CUNY | Brooklyn College 4

Windows Dispatcher Objects

• Outside of the kernel

• Also provides dispatcher objects which may act
mutexes, semaphores, events, and timers

• Events

• An event acts much like a condition variable

• Timers notify one or more thread when time expired

• Dispatcher objects either signaled-state (object
available) or non-signaled state (thread will block)

3/28/2019 CUNY | Brooklyn College 5

Mutex Dispatcher Object

3/28/2019 CUNY | Brooklyn College 6

Linux Synchronization
• Linux:

• Prior to kernel Version 2.6, disables interrupts to implement
short critical sections

• Version 2.6 and later, fully preemptive

• Linux provides:

• Semaphores

• atomic integers

• spinlocks

• reader-writer versions of both

• On single-CPU system, spinlocks replaced by enabling and
disabling kernel preemption

3/28/2019 CUNY | Brooklyn College 7

Atomic Operations

• Atomic variables
atomic_t is the type for atomic integer

• Consider the variables

• atomic_t counter;

int value;

3/28/2019 CUNY | Brooklyn College 8

Questions?

• Synchronization within the kernel

• Windows

• Linux

3/28/2019 CUNY | Brooklyn College 9

POSIX Synchronization

• POSIX API provides

• mutex locks

• semaphores

• condition variable

• Widely used on UNIX, Linux, and macOS

3/28/2019 CUNY | Brooklyn College 10

POSIX Mutex Locks

• Creating and initializing the lock

• Acquiring and releasing the lock

3/28/2019 CUNY | Brooklyn College 11

POSIX Semaphores

• POSIX provides two versions

• named and unnamed.

• Named semaphores can be used by unrelated
processes, unnamed cannot.

3/28/2019 CUNY | Brooklyn College 12

POSIX Named Semaphores

• Creating an initializing the semaphore:

Another process can access the semaphore by
referring to its name SEM.

• Acquiring and releasing the semaphore:

3/28/2019 CUNY | Brooklyn College 13

POSIX Unnamed Semaphores

• Creating an initializing the semaphore:

• Acquiring and releasing the semaphore:

3/28/2019 CUNY | Brooklyn College 14

POSIX Condition Variables

• Since POSIX is typically used in C/C++ and
these languages do not provide a monitor,
POSIX condition variables are associated
with a POSIX mutex lock to provide mutual
exclusion:

• Creating and initializing the condition
variable:

3/28/2019 CUNY | Brooklyn College 15

POSIX Condition Variables

• Thread waiting for the condition a == b to
become true:

• Thread signaling another thread waiting on
the condition variable:

3/28/2019 CUNY | Brooklyn College 16

Examples Programs with POSIX
Semaphores and Mutexes
• A few versions of the solution to the

Producer-Consumer problem

3/28/2019 CUNY | Brooklyn College 17

Java Synchronization

• Java provides rich set of synchronization
features:

• Java monitors

• Reentrant locks

• Semaphores

• Condition variables

3/28/2019 CUNY | Brooklyn College 18

Java Monitors

• Every Java object has associated with it a
single lock.

• If a method is declared as synchronized, a
calling thread must own the lock for the object.

• If the lock is owned by another thread, the
calling thread must wait for the lock until it is
released.

• Locks are released when the owning thread
exits the synchronized method.

3/28/2019 CUNY | Brooklyn College 19

Bounded Buffer using Java
Synchronization
• Example program using Java monitor

3/28/2019 CUNY | Brooklyn College 20

3/28/2019 CUNY | Brooklyn College 21

3/28/2019 CUNY | Brooklyn College 22

3/28/2019 CUNY | Brooklyn College 23

Java Synchronization

• A thread that tries to acquire an unavailable
lock is placed in the object’s entry set:

3/28/2019 CUNY | Brooklyn College 24

Java Synchronization

• Similarly, each object also has a wait set.

• When a thread calls wait():

• It releases the lock for the object

• The state of the thread is set to blocked

• The thread is placed in the wait set for the
object

3/28/2019 CUNY | Brooklyn College 25

Java Synchronization

• A thread typically calls wait() when it is waiting for
a condition to become true.

• How does a thread get notified?

• When a thread calls notify():

• An arbitrary thread T is selected from the wait set

1. T is moved from the wait set to the entry set

2. Set the state of T from blocked to runnable.

3. T can now compete for the lock to check if the
condition it was waiting for is now true.

3/28/2019 CUNY | Brooklyn College 26

Questions?

• Java monitor

• Example program

3/28/2019 CUNY | Brooklyn College 27

Java Reentrant Locks

• Similar to mutex locks

• The finally clause ensures the lock will be
released in case an exception occurs in the
try block.

3/28/2019 CUNY | Brooklyn College 28

Java Semaphores

• Constructor:

• Usage:

3/28/2019 CUNY | Brooklyn College 29

Java Condition Variables

• Condition variables are associated with an
ReentrantLock.

• Creating a condition variable using
newCondition() method of ReentrantLock:

• A thread waits by calling the await() method,
and signals by calling the signal() method.

3/28/2019 CUNY | Brooklyn College 30

Java Condition Variables
• Example:

• Five threads numbered 0 .. 4

• Shared variable turn indicating which thread’s turn it is.

• Thread calls doWork() when it wishes to do some work. (But it
may only do work if it is their turn.

• If not their turn, wait

• If their turn, do some work for awhile …...

• When completed, notify the thread whose turn is next.

• Necessary data structures:

3/28/2019 CUNY | Brooklyn College 31

3/28/2019 CUNY | Brooklyn College 32

Questions?

• In Java,

• Reentrant locks

• Semaphores

• Condition variables

3/28/2019 CUNY | Brooklyn College 33

Alternative Approaches

• Transactional Memory

• OpenMP

• Functional Programming Languages

3/28/2019 CUNY | Brooklyn College 34

Transactional Memory
• Consider a function update() that must be called atomically. One option is to use

mutex locks:

• A memory transaction is a sequence of read-write operations to memory that are
performed atomically. A transaction can be completed by adding atomic{S} which
ensure statements in S are executed atomically:

3/28/2019 CUNY | Brooklyn College 35

OpenMP
• OpenMP is a set of compiler directives and API that support

parallel progamming.

void update(int value)

{

#pragma omp critical

{

count += value

}

}

• The code contained within the #pragma omp critical directive
is treated as a critical section and performed atomically.

3/28/2019 CUNY | Brooklyn College 36

Functional Programming
Languages
• Functional programming languages offer a

different paradigm than procedural
languages in that they do not maintain state.

• Variables are treated as immutable and
cannot change state once they have been
assigned a value.

• There is increasing interest in functional
languages such as Erlang and Scala for their
approach in handling data races.

3/28/2019 CUNY | Brooklyn College 37

Questions?

• Transactional Memory

• OpenMP

• Functional Programming Languages

3/28/2019 CUNY | Brooklyn College 38

