
CISC 3320

C21c OS Tools for
Synchronization

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

3/28/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides
provided by the authors of the textbook via
the publisher of the textbook

3/28/2019 CUNY | Brooklyn College 2

Outline

• Mutex Locks

• Semaphores

• Monitors

• Liveness

• Evaluation

3/28/2019 CUNY | Brooklyn College 3

OS Tools for Synchronization

• Previous solutions are complicated and
generally inaccessible to application
programmers

• OS designers build software tools to solve
critical section problem

• Mutex lock

• Semaphore (with/without busy-waiting)

• Monitor

3/28/2019 CUNY | Brooklyn College 4

Mutex Locks

• Protect a critical section by

• first acquire() a lock, then

• release() the lock

• Calls to acquire() and release() must be
atomic

• Boolean variable indicating if lock is available
or not

3/28/2019 CUNY | Brooklyn College 5

Solution to Critical-section
Problem Using Locks

3/28/2019 CUNY | Brooklyn College 6

while (true) {

acquire(); /* acquire lock */

critical section

release(); /* release lock */

remainder section

}

Mutex Lock Definitions
• These two functions must be implemented atomically.

acquire() {
while (!available)

; /* busy wait */

available = false;

}

release() {

available = true;

}

3/28/2019 CUNY | Brooklyn College 7

Implementing Mutex Lock

• Both test-and-set and compare-and-swap
can be used to implement these functions.

• How?

3/28/2019 CUNY | Brooklyn College 8

Mutex: Remark

• acquire() and release() usually implemented
via hardware atomic instructions such as
compare-and-swap.

• But this solution requires busy waiting

• This type of mutex lock therefore called a
spinlock

3/28/2019 CUNY | Brooklyn College 9

Questions?

• Concept of mutex lock

• Implementation of mutex lock

• Concept of spinlock

• Advantage of disadvantage of spinlock

3/28/2019 CUNY | Brooklyn College 10

Semaphore

• Synchronization tool that provides more
sophisticated ways (than Mutex locks) for process
to synchronize their activities.

• Semaphore S

• integer variable

• Can only be accessed via two indivisible (atomic)
operations

• wait() and signal()

• Originally called P() and V()

• Sometimes also called down() and up() (often in Unix)

3/28/2019 CUNY | Brooklyn College 11

Definition: wait() and signal()

wait()/P()/down()

wait(S) {

while (S <= 0)

; // busy wait

S--;

}

signal()/V()/up()

signal(S) {

S++;

}

3/28/2019 CUNY | Brooklyn College 12

Semaphore Usage

• Counting semaphore

• integer value can range over an unrestricted
domain

• Binary semaphore

• integer value can range only between 0 and 1

• Same as a mutex lock

• Can solve various synchronization problems

3/28/2019 CUNY | Brooklyn College 13

Solution using Semaphore

• Consider P1 and P2 that require S1 to happen
before S2

Create a semaphore “synch” initialized to 0

P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

3/28/2019 CUNY | Brooklyn College 14

Semaphore Implementation

• Must guarantee that no two processes can execute
the wait() and signal() on the same semaphore at
the same time

• Thus, the implementation becomes the critical
section problem where the wait and signal code are
placed in the critical section

• Could now have busy waiting in critical section
implementation

• But implementation code is short

• Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in
critical sections and therefore this is not a good
solution

3/28/2019 CUNY | Brooklyn College 15

Semaphore Implementation
without Busy waiting
• With each semaphore there is an associated waiting queue

• Each entry in a waiting queue has two data items:

• value (of type integer)

• pointer to next record in the list

• Two operations:

• block – place the process invoking the operation on the appropriate waiting
queue

• wakeup – remove one of processes in the waiting queue and place it in the
ready queue

typedef struct {

int value;

struct process *list;

} semaphore;

3/28/2019 CUNY | Brooklyn College 16

wait(semaphore *S) {

S->value--;

if (S->value < 0) {

add this process

to S->list;

sleep();

}

}

signal(semaphore *S) {

S->value++;

if (S->value <= 0)

{

remove a process

P from S->list;

wakeup(P);

}

}

3/28/2019 CUNY | Brooklyn College 17

sleep() and wakeup(P)

• The sleep() operation suspends the process
that invokes it.

• The wakeup(P) operation resumes the
execution of a suspended process P.

• These two operations are provided by the
operating system as basic system calls.

3/28/2019 CUNY | Brooklyn College 18

Problems with Semaphores

• Incorrect use of semaphore operations:

• signal (mutex) …. wait (mutex)

• wait (mutex) … wait (mutex)

• Omitting of wait (mutex) and/or signal (mutex)

• These – and others – are examples of what can
occur when semaphores and other synchronization
tools are used incorrectly

3/28/2019 CUNY | Brooklyn College 19

Questions?

• Definition Semaphore

• Implementation with or without busy-waiting

• Problems with semaphore

3/28/2019 CUNY | Brooklyn College 20

Monitors

• A high-level abstraction that provides a
convenient and effective mechanism for
process synchronization

• Abstract data type, internal variables only
accessible by code within the procedure

• Only one process may be active within the
monitor at a time

3/28/2019 CUNY | Brooklyn College 21

Syntax of a Monitor

• Pseudocode syntax of a monitor:
monitor monitor-name

{

// shared variable declarations

function P1 (…) { …. }

function P2 (…) { …. }

function Pn (…) {……}

initialization code (…) { … }

}

3/28/2019 CUNY | Brooklyn College 22

Schematic view of a Monitor

3/28/2019 CUNY | Brooklyn College 23

Condition Variables

• condition x, y;

• Two operations are allowed on a condition
variable:

• x.wait()

• a process that invokes the operation is suspended until
x.signal()

• x.signal()

• resumes one of processes (if any) that invoked x.wait()

• If no x.wait() on the variable, then it has no effect on
the variable

3/28/2019 CUNY | Brooklyn College 24

Monitor with Condition
Variables

3/28/2019 CUNY | Brooklyn College 25

Choices of Condition Variables

• If process P invokes x.signal(), and process Q is suspended in
x.wait(), what should happen next?

• Both Q and P cannot execute in paralel. If Q is resumed, then P must
wait

• Options include

• Signal and wait – P waits until Q either leaves the monitor or it
waits for another condition

• Signal and continue – Q waits until P either leaves the monitor or it
waits for another condition

• Both have pros and cons – language implementer can decide

• Monitors implemented in Concurrent Pascal compromise

• P executing signal immediately leaves the monitor, Q is resumed

• Implemented in other languages including Mesa, C#, Java

3/28/2019 CUNY | Brooklyn College 26

Monitor Implementation Using
Semaphores
• Variables

semaphore mutex; // (initially = 1)

semaphore next; // (initially = 0)

int next_count = 0;

• Each function F will be replaced by

wait(mutex);

…

body of F;

…

if (next_count > 0)

signal(next)

else

signal(mutex);

• Mutual exclusion within a monitor is ensured

3/28/2019 CUNY | Brooklyn College 27

Monitor Implementation –
Condition Variables
• For each condition variable x, we have:

semaphore x_sem; // (initially = 0)

int x_count = 0;

• The operation x.wait() can be implemented as:

x_count++;

if (next_count > 0)

signal(next);

else

signal(mutex);

wait(x_sem);

x_count--;

3/28/2019 CUNY | Brooklyn College 28

• The operation x.signal() can be implemented as:

if (x_count > 0) {

next_count++;

signal(x_sem);

wait(next);

next_count--;

}

3/28/2019 CUNY | Brooklyn College 29

Resuming Processes within a
Monitor
• If several processes queued on condition

variable x, and x.signal() is executed,
which process should be resumed?

• FCFS frequently not adequate

• conditional-wait construct of the form
x.wait(c)

• Where c is priority number

• Process with lowest number (highest priority) is
scheduled next

3/28/2019 CUNY | Brooklyn College 30

Resuming Processes
• Allocate a single resource among competing processes using priority

numbers that specify the maximum time a process plans to use the
resource

R.acquire(t);

...

access the resurce;

...

R.release(t);

• Where R is an instance of type ResourceAllocator

3/28/2019 CUNY | Brooklyn College 31

A Monitor to Allocate Single
Resource
monitor ResourceAllocator
{

boolean busy;
condition x;
void acquire(int time) {

if (busy)
x.wait(time);

busy = true;
}
void release() {

busy = FALSE;
x.signal();

}
initialization code() {
busy = false;
}

}

3/28/2019 CUNY | Brooklyn College 32

Questions?

• Mutex lock

• Semaphore (with/without busy-waiting)

• Monitor

3/28/2019 CUNY | Brooklyn College 33

Synchronization Issues

• Liveness

• Deadlock

• Starvation

• Priority inversion

3/28/2019 CUNY | Brooklyn College 34

Liveness

• Processes may have to wait indefinitely while
trying to acquire a synchronization tool such as
a mutex lock or semaphore.

• Waiting indefinitely violates the progress and
bounded-waiting criteria discussed at the
beginning of this chapter.

• Liveness refers to a set of properties that a
system must satisfy to ensure processes make
progress.

• Indefinite waiting is an example of a liveness
failure.

3/28/2019 CUNY | Brooklyn College 35

Deadlock
• Deadlock – two or more processes are waiting indefinitely for an

event that can be caused by only one of the waiting processes

• Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

• Consider if P0 executes wait(S) and P1 wait(Q). When P0 executes
wait(Q), it must wait until P1 executes signal(Q)

• However, P1 is waiting until P0 execute signal(S).

• Since these signal() operations will never be executed, P0 and P1 are
deadlocked.

3/28/2019 CUNY | Brooklyn College 36

Starvation

• Starvation – indefinite blocking

• A process may never be removed from the
semaphore queue in which it is suspended

3/28/2019 CUNY | Brooklyn College 37

Priority Inversion

• Priority Inversion – Scheduling problem
when lower-priority process holds a lock
needed by higher-priority process

• Solved via priority-inheritance protocol

3/28/2019 CUNY | Brooklyn College 38

Priority Inheritance Protocol
• Consider the scenario with three processes P1, P2, and P3. P1

has the highest priority, P2 the next highest, and P3 the
lowest. Assume a resouce P3 is assigned a resource R that P1
wants. Thus, P1 must wait for P3 to finish using the resource.
However, P2 becomes runnable and preempts P3. What has
happened is that P2 - a process with a lower priority than P1 -
has indirectly prevented P3 from gaining access to the
resource.

• To prevent this from occurring, a priority inheritance protocol
is used. This simply allows the priority of the highest thread
waiting to access a shared resource to be assigned to the
thread currently using the resource. Thus, the current owner
of the resource is assigned the priority of the highest priority
thread wishing to acquire the resource.

3/28/2019 CUNY | Brooklyn College 39

Questions?

• The Critical-Section Problem

• Peterson’s Solution

• Hardware Support for Synchronization

• Mutex Locks

• Semaphores

• Monitors

• Liveness

• Evaluation

3/28/2019 CUNY | Brooklyn College 40

