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OS Tools for Synchronization

• Previous solutions are complicated and 
generally inaccessible to application 
programmers

• OS designers build software tools to solve 
critical section problem

• Mutex lock

• Semaphore (with/without busy-waiting)

• Monitor
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Mutex Locks

• Protect a critical section  by 

• first acquire() a lock, then 

• release() the lock

• Calls to acquire() and release() must be 
atomic

• Boolean variable indicating if lock is available 
or not
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Solution to Critical-section 
Problem Using Locks
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while (true) { 

acquire(); /* acquire lock */

critical section 

release(); /* release lock  */

remainder section 

} 



Mutex Lock Definitions
• These two functions must be implemented atomically.

acquire() {
while (!available) 

; /* busy wait */ 

available = false; 

} 

release() { 

available = true; 

} 
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Implementing Mutex Lock

• Both test-and-set and compare-and-swap 
can be used to implement these functions.

• How? 
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Mutex: Remark

• acquire() and release()  usually implemented 
via hardware atomic instructions such as 
compare-and-swap.

• But this solution requires busy waiting

• This type of mutex lock therefore called a 
spinlock
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Questions?

• Concept of mutex lock

• Implementation of mutex lock

• Concept of spinlock

• Advantage of disadvantage of spinlock
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Semaphore

• Synchronization tool that provides more 
sophisticated ways (than Mutex locks)  for process 
to synchronize their activities.

• Semaphore S

• integer variable

• Can only be accessed via two indivisible (atomic) 
operations

• wait() and signal()

• Originally called P() and V()

• Sometimes also called down() and up() (often in Unix)
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Definition: wait() and signal()

wait()/P()/down()

wait(S) { 

while (S <= 0)

; // busy wait

S--;

}

signal()/V()/up()

signal(S) { 

S++;

}
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Semaphore Usage

• Counting semaphore

• integer value can range over an unrestricted 
domain

• Binary semaphore

• integer value can range only between 0 and 1

• Same as a mutex lock

• Can solve various synchronization problems
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Solution using Semaphore

• Consider P1  and P2 that require S1 to happen 
before S2

Create a semaphore “synch” initialized to 0 

P1:

S1;

signal(synch);

P2:

wait(synch);

S2;
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Semaphore Implementation

• Must guarantee that no two processes can execute  
the wait() and signal() on the same semaphore at 
the same time

• Thus, the implementation becomes the critical 
section problem where the wait and signal code are 
placed in the critical section

• Could now have busy waiting in critical section 
implementation

• But implementation code is short

• Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in 
critical sections and therefore this is not a good 
solution
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Semaphore Implementation 
without Busy waiting
• With each semaphore there is an associated waiting queue

• Each entry in a waiting queue has two data items:

• value (of type integer)

• pointer to next record in the list

• Two operations:

• block – place the process invoking the operation on the appropriate waiting 
queue

• wakeup – remove one of processes in the waiting queue and place it in the 
ready queue

typedef struct { 

int value; 

struct process *list; 

} semaphore;
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wait(semaphore *S) { 

S->value--; 

if (S->value < 0) {

add this process 

to S->list; 

sleep(); 

} 

}

signal(semaphore *S) { 

S->value++; 

if (S->value <= 0) 

{

remove a process 

P from S->list; 

wakeup(P); 

} 

}
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sleep() and wakeup(P)

• The sleep() operation suspends the process 
that invokes it. 

• The wakeup(P) operation resumes the 
execution of a suspended process P. 

• These two operations are provided by the 
operating system as basic system calls.
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Problems with Semaphores

• Incorrect use of semaphore operations:

• signal (mutex)  ….  wait (mutex)

• wait (mutex)  …  wait (mutex)

• Omitting  of wait (mutex) and/or signal (mutex)

• These – and others – are examples of what can 
occur when semaphores and other synchronization 
tools are used incorrectly
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Questions?

• Definition Semaphore

• Implementation with or without busy-waiting

• Problems with semaphore
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Monitors

• A high-level abstraction that provides a 
convenient and effective mechanism for 
process synchronization

• Abstract data type, internal variables only 
accessible by code within the procedure

• Only one process may be active within the 
monitor at a time
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Syntax of a Monitor

• Pseudocode syntax of a monitor:
monitor monitor-name

{

// shared variable declarations

function P1 (…) { …. }

function P2 (…) { …. }

function Pn (…) {……}

initialization code (…) { … }

}
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Schematic view of a Monitor
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Condition Variables

• condition x, y;

• Two operations are allowed on a condition 
variable:

• x.wait() 

• a process that invokes the operation is suspended until 
x.signal() 

• x.signal()

• resumes one of processes (if any) that invoked x.wait()

• If no x.wait() on the variable, then it has no effect on 
the variable

3/28/2019 CUNY | Brooklyn College 24



Monitor with Condition 
Variables
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Choices of Condition Variables

• If process P invokes x.signal(), and process Q is suspended in 
x.wait(), what should happen next?

• Both Q and P cannot execute in paralel. If Q is resumed, then P must 
wait

• Options include

• Signal and wait – P waits until Q either leaves the monitor or it 
waits for another condition

• Signal and continue – Q waits until P either leaves the monitor or it  
waits for another condition

• Both have pros and cons – language implementer can decide

• Monitors implemented in Concurrent Pascal compromise

• P executing signal immediately leaves the monitor, Q is resumed

• Implemented in other languages including Mesa, C#, Java
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Monitor Implementation Using 
Semaphores
• Variables 

semaphore mutex;  // (initially  = 1)

semaphore next;   // (initially  = 0)

int next_count = 0;

• Each function F will be replaced by

wait(mutex);

…

body of F;

…

if (next_count > 0)

signal(next)

else 

signal(mutex);

• Mutual exclusion within a monitor is ensured
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Monitor Implementation –
Condition Variables
• For each condition variable x, we  have:

semaphore x_sem; // (initially  = 0)

int x_count = 0;

• The operation x.wait() can be implemented as:

x_count++;

if (next_count > 0)

signal(next);

else

signal(mutex);

wait(x_sem);

x_count--;
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• The operation x.signal() can be implemented as:

if (x_count > 0) {

next_count++;

signal(x_sem);

wait(next);

next_count--;

}
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Resuming Processes within a 
Monitor
• If several processes queued on condition 

variable x, and x.signal() is executed, 
which process should be resumed?

• FCFS frequently not adequate 

• conditional-wait construct of the form 
x.wait(c)

• Where c is priority number

• Process with lowest number (highest priority) is 
scheduled next
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Resuming Processes
• Allocate a single resource among competing processes using priority 

numbers that specify the maximum time a process  plans to use the 
resource

R.acquire(t);

...

access the resurce;

...

R.release(t);

• Where R is an instance of  type ResourceAllocator
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A Monitor to Allocate Single 
Resource
monitor ResourceAllocator
{ 

boolean busy; 
condition x; 
void acquire(int time) { 

if (busy) 
x.wait(time); 

busy = true; 
} 
void release() { 

busy = FALSE; 
x.signal(); 

} 
initialization code() {
busy = false; 
}

}
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Questions?

• Mutex lock

• Semaphore (with/without busy-waiting)

• Monitor
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Synchronization Issues 

• Liveness

• Deadlock

• Starvation

• Priority inversion
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Liveness

• Processes may have to wait indefinitely while 
trying to acquire a synchronization tool such as 
a mutex lock or semaphore.

• Waiting indefinitely violates the progress and 
bounded-waiting criteria discussed at the 
beginning of this chapter.

• Liveness refers to a set of properties that a 
system must satisfy to ensure processes make 
progress.

• Indefinite waiting is an example of a liveness 
failure.
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Deadlock
• Deadlock – two or more processes are waiting indefinitely for an 

event that can be caused by only one of the waiting processes

• Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S);                 signal(Q);

signal(Q);                 signal(S);

• Consider if P0 executes wait(S) and P1 wait(Q). When P0 executes 
wait(Q), it must wait until P1 executes signal(Q)

• However, P1 is waiting until P0 execute signal(S).

• Since these signal() operations will never be executed, P0 and P1 are 
deadlocked.
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Starvation

• Starvation – indefinite blocking  

• A process may never be removed from the 
semaphore queue in which it is suspended
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Priority Inversion

• Priority Inversion – Scheduling problem 
when lower-priority process holds a lock 
needed by higher-priority process

• Solved via priority-inheritance protocol
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Priority Inheritance Protocol
• Consider the scenario with three processes P1, P2, and P3. P1 

has the highest priority, P2 the next highest, and P3 the 
lowest. Assume a resouce P3 is assigned a resource R that P1 
wants. Thus, P1 must wait for P3 to finish using the resource. 
However, P2 becomes runnable and preempts P3. What has 
happened is that P2 - a process with a lower priority than P1 -
has indirectly prevented P3 from gaining access to the 
resource.

• To prevent this from occurring, a priority inheritance protocol 
is used. This simply allows the priority of the highest thread 
waiting to access a shared resource to be assigned to the 
thread currently using the resource. Thus, the current owner 
of the resource is assigned the priority of the highest priority 
thread wishing to acquire the resource.
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Questions?

• The Critical-Section Problem

• Peterson’s Solution

• Hardware Support for Synchronization

• Mutex Locks

• Semaphores

• Monitors

• Liveness

• Evaluation
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