
CISC 3320

C21b Hardware Support for
Synchronization

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

3/28/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides
provided by the authors of the textbook via
the publisher of the textbook

3/28/2019 CUNY | Brooklyn College 2

Outline

• Hardware Support for Synchronization

• Mutex Locks

• Semaphores

• Monitors

• Liveness

• Evaluation

3/28/2019 CUNY | Brooklyn College 3

Hardware Support for
Synchronization
• Concept of lock

• Uniprocessor and multiprocessor system

• Memory barrier

• Special instructions

• Atomic variables

3/28/2019 CUNY | Brooklyn College 4

Synchronization

• Generally speaking, any solution to the
critical-section problem is to construct a
simple tool, called a “lock”

• A process must acquire a lock before
entering a critical section, and releases the
lock when it exits the critical section

3/28/2019 CUNY | Brooklyn College 5

Synchronization Hardware

• Many systems provide hardware support for
synchronization

• Uniprocessor systems

• Multiprocessor systems

3/28/2019 CUNY | Brooklyn College 6

Uniprocessor Systems

• Disable interrupts

• Currently running code would execute without
preemption

• Generally too inefficient on multiprocessor
systems

• Operating systems using this not broadly scalable

3/28/2019 CUNY | Brooklyn College 7

Hardware Support for
Synchronization
• We will look at three forms of hardware

support:

1. Memory barriers

2. Hardware instructions

3. Atomic variables

3/28/2019 CUNY | Brooklyn College 8

Memory Barriers
• Memory model are the memory guarantees a computer

architecture makes to application programs.

• Memory models may be either:

• Strongly ordered – where a memory modification of one
processor is immediately visible to all other processors.

• Weakly ordered – where a memory modification of one
processor may not be immediately visible to all other
processors.

• A memory barrier is an instruction that forces any
change in memory to be propagated (made visible) to all
other processors.

3/28/2019 CUNY | Brooklyn College 9

Solution using Memory Barrier

• We could add a memory barrier to the following
instructions to ensure Thread 1 outputs 100:

• Thread 1 now performs

while (!flag)

memory_barrier();

print x

• Thread 2 now performs

x = 100;

memory_barrier();

flag = true

3/28/2019 CUNY | Brooklyn College 10

Hardware Instructions

• Special hardware instructions that allow us
to either test-and-modify the content of a
word, or two swap the contents of two words
atomically (uninterruptibly.)

• Test-and-Set instruction

• Compare-and-Swap instruction

3/28/2019 CUNY | Brooklyn College 11

test_and_set Instruction
Definition:

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = true;

return rv:

}

1. Executed atomically

2. Returns the original value of passed parameter

3. Set the new value of passed parameter to true

3/28/2019 CUNY | Brooklyn College 12

Solution using test_and_set()

• Shared Boolean variable lock, initialized to false

• Solution:

while (true) {

while (test_and_set(&lock))

; /* do nothing */

/* critical section */

lock = false;

/* remainder section */

}

3/28/2019 CUNY | Brooklyn College 13

compare_and_swap Instruction

Definition:

int compare_and_swap(int *value, int expected, int

new_value) {

int temp = *value;

if (*value == expected) *value = new_value;

return temp;

}

1. Executed atomically

2. Returns the original value of passed parameter value

3. Set the variable value the value of the passed parameter
new_value but only if *value == expected is true. That
is, the swap takes place only under this condition.

3/28/2019 CUNY | Brooklyn College 14

Solution using
compare_and_swap
• Shared integer lock initialized to 0;

• Solution:

while (true){

while (compare_and_swap(&lock, 0, 1) != 0)

; /* do nothing */

/* critical section */

lock = 0;

/* remainder section */

}

3/28/2019 CUNY | Brooklyn College 15

Bounded Waiting?

• Although these algorithms satisfy the
mutual-exclusion requirement, they do not
satisfy the bounded-waiting requirement

3/28/2019 CUNY | Brooklyn College 16

Bounded-Waiting Mutual
Exclusion
• Demonstrate it using with compare-and-swap

• Two variables

• boolean waiting[n];

• int lock;

• The elements in the waiting array are
initialized to false, and lock is initialized to
0.

3/28/2019 CUNY | Brooklyn College 17

Bounded-Waiting Mutual Exclusion
with compare-and-swap

while (true) {

waiting[i] = true;

key = 1;

while (waiting[i] && key == 1)

key =

compare_and_swap(&lock,0,1);

waiting[i] = false;

/* critical section */

j = (i + 1) % n;

while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)

lock = 0;

else

waiting[j] = false;

/* remainder section */

}

3/28/2019 CUNY | Brooklyn College 18

Bounded Waiting

• When a process leaves its critical section, it
scans the array waiting in the cyclic ordering
(i + 1, i + 2, …, n − 1, 0, …, i − 1).

• It designates the first process in this
ordering that is in the entry section
(waiting[j] == true) as the next one to enter
the critical section.

• Any process waiting to enter its critical
section will thus do so within n − 1 turns.

3/28/2019 CUNY | Brooklyn College 19

Atomic Variables

• Typically, instructions such as compare-and-
swap are used as building blocks for other
synchronization tools.

• One tool is an atomic variable that provides
atomic (uninterruptible) updates on basic data
types such as integers and booleans.

• For example, the increment() operation on
the atomic variable sequence ensures
sequence is incremented without interruption:

increment(&sequence);

3/28/2019 CUNY | Brooklyn College 20

Solution using Atomic Variables

• The increment() function can be implemented as
follows:

void increment(atomic_int *v)

{

int temp;

do {

temp = *v;

}

while (temp !=

(compare_and_swap(v,temp,temp+1));

}

3/28/2019 CUNY | Brooklyn College 21

Questions?

• Concept of “lock”

• Synchronization hardware

• Concept of lock

• Uniprocessor and multiprocessor system

• Memory barrier

• Special instructions

• Atomic variables

3/28/2019 CUNY | Brooklyn College 22

