
CISC 3320

C21a Race Condition and
Critical Section

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

3/28/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides
provided by the authors of the textbook via
the publisher of the textbook

3/28/2019 CUNY | Brooklyn College 2

Outline
• Race condition

• The Critical-Section Problem

• Peterson’s Solution

• Hardware Support for Synchronization

• Mutex Locks

• Semaphores

• Monitors

• Liveness

• Evaluation

3/28/2019 CUNY | Brooklyn College 3

Background

• Processes can execute concurrently

• May be interrupted at any time, partially completing
execution

• Concurrent access to shared data may result in
data inconsistency

• Maintaining data consistency requires
mechanisms to ensure the orderly execution of
cooperating processes

• Otherwise, a race condition occurs

• Examining two examples

3/28/2019 CUNY | Brooklyn College 4

Race Condition: Example 1

• Illustration of the problem using the consumer-
producer problem

• Suppose that we wanted to provide a solution to the
consumer-producer problem that fills all the buffers.

• We can do so by having an integer counter that keeps
track of the number of full buffers.

• Initially, counter is set to 0.

• It is incremented by the producer after it produces
a new buffer and is decremented by the consumer
after it consumes a buffer.

3/28/2019 CUNY | Brooklyn College 5

Producer
while (true) {

/* produce an item in next produced */

while (counter == BUFFER_SIZE)

; /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

3/28/2019 CUNY | Brooklyn College 6

Consumer

while (true) {

while (counter == 0)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

/* consume the item in next consumed */

}

3/28/2019 CUNY | Brooklyn College 7

Increment and Decrement
Counter
• counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

• counter-- could be implemented as

register2 = counter
register2 = register2 - 1
counter = register2

3/28/2019 CUNY | Brooklyn College 8

Race Condition

• Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

3/28/2019 CUNY | Brooklyn College 9

Race Condition: Example 2

• Processes P0 and P1 are creating child
processs using the fork() system call

• Race condition on kernel variable
next_available_pid which represents the
next available process identifier (pid)

• Unless there is mutual exclusion, the same
pid could be assigned to two different
processes!

3/28/2019 CUNY | Brooklyn College 10

3/28/2019 CUNY | Brooklyn College 11

Questions?

• Concept of race condition

• Need of process synchronization

3/28/2019 CUNY | Brooklyn College 12

Critical Section Problem

• Consider system of n processes {p0, p1, … pn-1}

• Each process has critical section segment of code

• Process may be changing common variables, updating table,
writing file, etc

• When one process in critical section, no other may be in its
critical section

• Critical section problem is to design protocol to
solve this

• Each process must ask permission to enter critical
section in entry section, may follow critical section
with exit section, then remainder section

3/28/2019 CUNY | Brooklyn College 13

Critical Section

• General structure of process Pi

3/28/2019 CUNY | Brooklyn College 14

Solution to Critical-Section
Problem
• 3 requirements must be met

• Mutual Exclusion

• Progress

• Bounded Waiting

• Assume that each process executes at a
nonzero speed

• No assumption concerning relative speed of the
n processes

3/28/2019 CUNY | Brooklyn College 15

Mutual Exclusion

• If process Pi is executing in its critical
section, then no other processes can be
executing in their critical sections

3/28/2019 CUNY | Brooklyn College 16

Progress

• If no process is executing in its critical
section and there exist some processes that
wish to enter their critical section, then the
selection of the processes that will enter
the critical section next cannot be
postponed indefinitely

3/28/2019 CUNY | Brooklyn College 17

Bounded Waiting

• A bound must exist on the number of times
that other processes are allowed to enter
their critical sections after a process has
made a request to enter its critical section
and before that request is granted

3/28/2019 CUNY | Brooklyn College 18

Critical-Section Handling in OS

• Two approaches depending on if kernel is
preemptive or non-preemptive

• Preemptive

• allows preemption of process when running in kernel
mode

• Non-preemptive

• Runs until exits kernel mode, blocks, or voluntarily
yields CPU

• Essentially free of race conditions in kernel mode

3/28/2019 CUNY | Brooklyn College 19

Peterson’s Solution
• Not guaranteed to work on modern architectures! (But

good algorithmic description of solving the problem)

• Two process solution

• Assume that the load and store machine-language instructions
are atomic; that is, cannot be interrupted

• The two processes share two variables:

• int turn; boolean flag[2];

• The variable turn indicates whose turn it is to enter the
critical section

• The flag array is used to indicate if a process is ready to
enter the critical section.

• flag[i] = true implies that process Pi is ready!

3/28/2019 CUNY | Brooklyn College 20

Algorithm for Process Pi

• Notice “i“ in Process Pi

3/28/2019 CUNY | Brooklyn College 21

while (true){

flag[i] = true;

turn = j;

while (flag[j] && turn = = j)

;

/* critical section */

flag[i] = false;

/* remainder section */

}

Peterson’s Solution: 3
Requirements
• Provable that the 3 critical section

requirement are met:

1. Mutual exclusion is preserved

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

3/28/2019 CUNY | Brooklyn College 22

Peterson’s Solution: Mutual
Exclusion
• Note that

• Pi enters its critical section only if either flag[j] == false or turn == i.

• if both processes can be executing in their critical sections at the
same time, then flag[0] == flag[1] == true.

• These two observations imply that

• P0 and P1 could not have successfully executed their while statements
at about the same time, since the value of turn can be either 0 or 1
but cannot be both.

• Therefore,

• one of the processes, e.g., Pj must have successfully executed the
while statement, whereas Pi had to execute at least one additional
statement (“turn == j”).

• However, at that time, flag[j] == true and turn == j, and this
condition will persist as long as Pj is in its critical section; as a result,
mutual exclusion is preserved.

3/28/2019 CUNY | Brooklyn College 23

Peterson’s Solution: Remarks
• Although useful for demonstrating an algorithm,

Peterson’s Solution is not guaranteed to work on modern
architectures.

• Understanding why it will not work is also useful for
better understanding race conditions.

• To improve performance, processors and/or compilers
may reorder operations that have no dependencies.

• For single-threaded this is OK as the result will always
be the same.

• For multithreaded the reordering may produce
inconsistent or unexpected results!

3/28/2019 CUNY | Brooklyn College 24

Peterson’s Solution: 2-Thread
Example
• Two threads share the data:

boolean flag = false;

int x = 0;

• Thread 1 performs

while (!flag)

;

print x

• Thread 2 performs

x = 100;

flag = true

• What is the expected output?

3/28/2019 CUNY | Brooklyn College 25

Peterson’s Solution

• 100 is the expected output.

• However, the operations for Thread 2 may be
reordered:

flag = true;

x = 100;

• If this occurs, the output may be 0!

• The effects of instruction reordering in Peterson’s
Solution

• This allows both processes to be in their critical section at
the same time!

3/28/2019 CUNY | Brooklyn College 26

3/28/2019 CUNY | Brooklyn College 27

Questions?

• Peterson’s solution

• A software solution, a good description of an
algorithm solving the problem

• Is it guaranteed to work on modern
operating systems?

3/28/2019 CUNY | Brooklyn College 28

