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Outline
• Race condition

• The Critical-Section Problem

• Peterson’s Solution

• Hardware Support for Synchronization

• Mutex Locks

• Semaphores

• Monitors

• Liveness

• Evaluation

3/28/2019 CUNY | Brooklyn College 3



Background

• Processes can execute concurrently

• May be interrupted at any time, partially completing 
execution

• Concurrent access to shared data may result in 
data inconsistency

• Maintaining data consistency requires 
mechanisms to ensure the orderly execution of 
cooperating processes

• Otherwise, a race condition occurs

• Examining two examples
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Race Condition: Example 1

• Illustration of the problem using the consumer-
producer problem

• Suppose that we wanted to provide a solution to the 
consumer-producer problem that fills all the buffers. 

• We can do so by having an integer counter that keeps 
track of the number of full buffers.  

• Initially, counter is set to 0. 

• It is incremented by the producer after it produces 
a new buffer and is decremented by the consumer 
after it consumes a buffer.

3/28/2019 CUNY | Brooklyn College 5



Producer
while (true) {

/* produce an item in next produced */ 

while (counter == BUFFER_SIZE)  

; /* do nothing */ 

buffer[in] = next_produced; 

in = (in + 1) % BUFFER_SIZE; 

counter++; 

}
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Consumer

while (true) {

while (counter == 0) 

; /* do nothing */ 

next_consumed = buffer[out]; 

out = (out + 1) % BUFFER_SIZE; 

counter--; 

/* consume the item in next consumed */ 

} 
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Increment and Decrement 
Counter
• counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

• counter-- could be implemented as

register2 = counter
register2 = register2 - 1
counter = register2
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Race Condition

• Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter         {register1 = 5}
S1: producer execute register1 = register1 + 1   {register1 = 6} 
S2: consumer execute register2 = counter        {register2 = 5} 
S3: consumer execute register2 = register2 – 1  {register2 = 4} 
S4: producer execute counter = register1         {counter = 6 } 
S5: consumer execute counter = register2        {counter = 4}
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Race Condition: Example 2

• Processes P0 and P1 are creating child 
processs using the fork() system call

• Race condition on kernel variable 
next_available_pid which represents the 
next available process identifier (pid)

• Unless there is mutual exclusion, the same 
pid could be assigned to two different 
processes!
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Questions?

• Concept of race condition

• Need of process synchronization
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Critical Section Problem

• Consider system of n processes {p0, p1, … pn-1}

• Each process has critical section segment of code

• Process may be changing common variables, updating table, 
writing file, etc

• When one process in critical section, no other may be in its 
critical section

• Critical section problem is to design protocol to 
solve this

• Each process must ask permission to enter critical 
section in entry section, may follow critical section 
with exit section, then remainder section

3/28/2019 CUNY | Brooklyn College 13



Critical Section

• General structure of process Pi
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Solution to Critical-Section 
Problem
• 3 requirements must be met

• Mutual Exclusion

• Progress

• Bounded Waiting

• Assume that each process executes at a 
nonzero speed 

• No assumption concerning relative speed of the 
n processes
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Mutual Exclusion

• If process Pi is executing in its critical 
section, then no other processes can be 
executing in their critical sections
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Progress

• If no process is executing in its critical 
section and there exist some processes that 
wish to enter their critical section, then the 
selection of the processes that will enter 
the critical section next cannot be 
postponed indefinitely
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Bounded Waiting

• A bound must exist on the number of times 
that other processes are allowed to enter 
their critical sections after a process has 
made a request to enter its critical section 
and before that request is granted
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Critical-Section Handling in OS

• Two approaches depending on if kernel is 
preemptive or non-preemptive 

• Preemptive

• allows preemption of process when running in kernel 
mode

• Non-preemptive

• Runs until exits kernel mode, blocks, or voluntarily 
yields CPU

• Essentially free of race conditions in kernel mode
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Peterson’s Solution
• Not guaranteed to work on modern architectures! (But 

good algorithmic description of solving the problem)

• Two process solution

• Assume that the load and store machine-language instructions 
are atomic; that is, cannot be interrupted

• The two processes share two variables:

• int turn; boolean flag[2];

• The variable turn indicates whose turn it is to enter the 
critical section

• The flag array is used to indicate if a process is ready to 
enter the critical section. 

• flag[i] = true  implies that process Pi is ready!
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Algorithm for Process Pi

• Notice “i“ in Process Pi

3/28/2019 CUNY | Brooklyn College 21

while (true){ 

flag[i] = true; 

turn = j; 

while (flag[j] && turn = = j)

;

/* critical section */

flag[i] = false;

/* remainder section */

}



Peterson’s Solution: 3 
Requirements
• Provable that the 3 critical section 

requirement are met:

1. Mutual exclusion is preserved

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met
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Peterson’s Solution: Mutual 
Exclusion
• Note that

• Pi enters its critical section only if either flag[j] == false or turn == i. 

• if both processes can be executing in their critical sections at the 
same time, then flag[0] == flag[1] == true. 

• These two observations imply that 

• P0 and P1 could not have successfully executed their while statements 
at about the same time, since the value of turn can be either 0 or 1 
but cannot be both. 

• Therefore, 

• one of the processes, e.g., Pj must have successfully executed the 
while statement, whereas Pi had to execute at least one additional 
statement (“turn == j”). 

• However, at that time, flag[j] == true and turn == j, and this 
condition will persist as long as Pj is in its critical section; as a result, 
mutual exclusion is preserved.
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Peterson’s Solution: Remarks
• Although useful for demonstrating an algorithm, 

Peterson’s Solution is not guaranteed to work on modern 
architectures.

• Understanding why it will not work is also useful for 
better understanding race conditions.

• To improve performance, processors and/or compilers 
may reorder operations that have no dependencies.

• For single-threaded this is OK as the result will always 
be the same.

• For multithreaded the reordering may produce 
inconsistent or unexpected results!
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Peterson’s Solution: 2-Thread 
Example
• Two threads share the data:

boolean flag = false;

int x = 0;

• Thread 1 performs

while (!flag)

;

print x

• Thread 2 performs

x = 100;

flag = true

• What is the expected output?

3/28/2019 CUNY | Brooklyn College 25



Peterson’s Solution

• 100 is the expected output.

• However, the operations for Thread 2 may be 
reordered:

flag = true;

x = 100;

• If this occurs, the output may be 0!

• The effects of instruction reordering in Peterson’s 
Solution

• This allows both processes to be in their critical section at 
the same time!
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Questions?

• Peterson’s solution

• A software solution, a good description of an 
algorithm solving the problem

• Is it guaranteed to work on modern 
operating systems? 
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