CISC 3320 C20d Paging: OS Examples

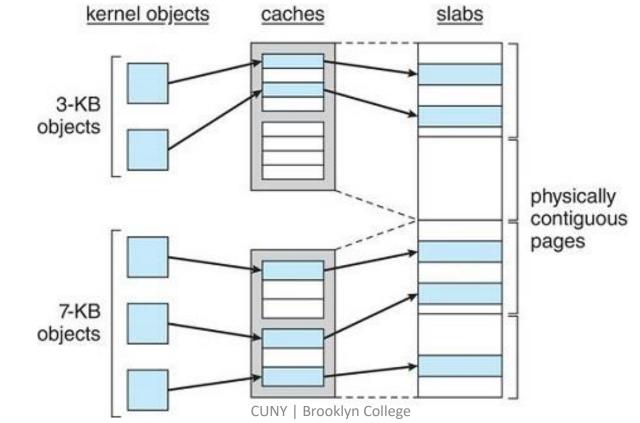
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

Acknowledgement

 These slides are a revision of the slides provided by the authors of the textbook via the publisher of the textbook


Outline

- Operating-System Examples
 - Linux
 - Windows
 - Solaris

Linux

3/25/2019

 Linux uses a variation of slab-allocation algorithm

Slab Allocation

- Use cache to store kernel objects
 - A single cache for each unique kernel data structure
 - e.g., a separate cache for the data structure representing process descriptors
 - A slab is made up of one or more physically contiguous pages
 - A cache consists of one or more slabs
 - When a cache is created, a number of objects, initially marked as free, are allocated to the cache.

Linux Slab

- In Linux, a slab may be in one of three possible states:
 - Full. All objects in the slab are marked as used.
 - Empty. All objects in the slab are marked as free.
 - Partial. The slab consists of both used and free objects.

Benefits of Slab Allocation

- No memory is wasted due to fragmentation.
- Memory requests can be satisfied quickly.

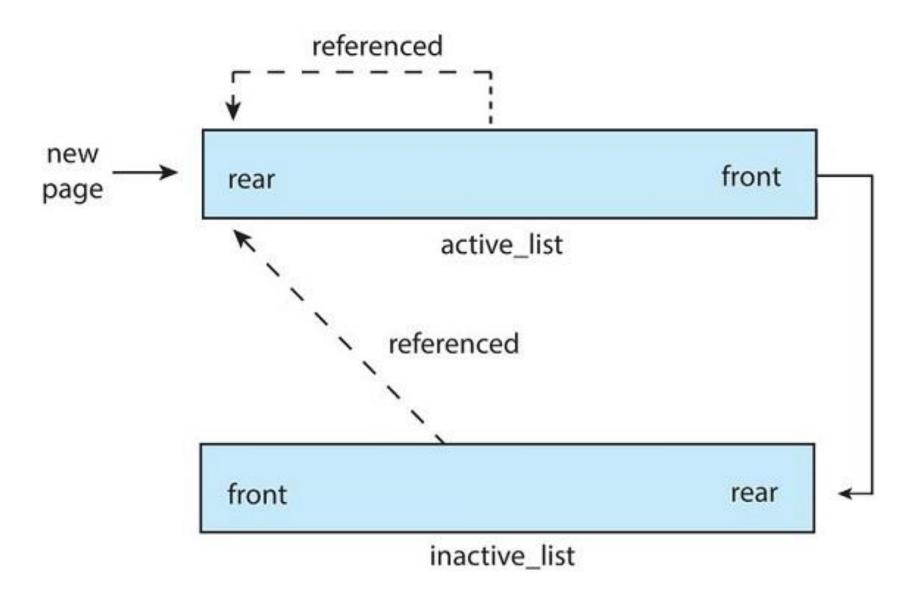
SLAB

- The slab allocator first appeared in the Solaris 2.4 kernel.
- Linux originally used the buddy system
- Linux kernel adopted the slab allocator from Version 2.2 to Version 2.6.24
 - Linux refers to its slab implementation as SLAB.
- Recent distributions of Linux include two other kernel memory allocators
 - The SLOB and SLUB allocators.

SLOB

- The SLOB allocator is designed for systems with a limited amount of memory
 - e.g., embedded systems.
- SLOB stands for "simple list of blocks
- SLOB maintains three lists of objects
 - small (for objects less than 256 bytes),
 - medium (for objects less than 1,024 bytes), and
 - large (for all other objects less than the size of a page).
 - Memory requests are allocated from an object on the appropriate list using a first-fit policy.

SLUB


- Linux kernel replaces SLAB by the SLUB allocator since Version 2.6.24
- SLUB reduced much of the overhead required by the SLAB allocator.
 - SLAB stores certain metadata with each slab while SLUB stores these data in the page structure the Linux kernel uses for each page.
 - Additionally, SLUB does not include the per-CPU queues that the SLAB allocator maintains for objects in each cache.
 - For systems with a large number of processors, the amount of memory allocated to these queues is significant.
 - Thus, SLUB provides better performance as the number of processors on a system increases.

Linux Virtual Memory

- Demand paging, allocating pages from a list of free frames
- Global page-replacement policy similar to the LRU-approximation clock algorithm

Active List and Inactive List

- Linux maintains two types of page lists
 - active_list. Pages are considered in use
 - inactive_list. Pages have not recently been referenced and are eligible to be reclaimed.
 - Accessed bit. Set whenever the page is being referenced.
 - When a page is being allocated or referenced, the accessed bit is set and the page is moved to the rear of the active_list.
 - Balance between the two lists. when the active_list grows much larger than the inactive_list, pages at the front of the active_list move to the inactive_list, where they become eligible for reclamation.


Windows

- Uses demand paging with clustering. Clustering brings in pages surrounding the faulting page
- Processes are assigned working set minimum and working set maximum
- Working set minimum is the minimum number of pages the process is guaranteed to have in memory
- A process may be assigned as many pages up to its working set maximum
- When the amount of free memory in the system falls below a threshold, automatic working set trimming is performed to restore the amount of free memory
- Working set trimming removes pages from processes that have pages in excess of their working set minimum

Solaris

- Maintains a list of free pages to assign faulting processes
- Lotsfree threshold parameter (amount of free memory) to begin paging
- Desfree threshold parameter to increasing paging
- Minfree threshold parameter to being swapping
- Paging is performed by pageout process
- Pageout scans pages using modified clock algorithm
- Scanrate is the rate at which pages are scanned. This ranges from slowscan to fastscan
- Pageout is called more frequently depending upon the amount of free memory available
- Priority paging gives priority to process code pages

Solaris 2 Page Scanner

Questions?