CISC 3320 C18c Intel 32- and 64-bit Architecture

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

Acknowledgement

 These slides are a revision of the slides provided by the authors of the textbook via the publisher of the textbook

Outline

• Example: The Intel 32 and 64-bit Architectures

• Example: ARMv8 Architecture

Example: The Intel 32 and 64bit Architectures

- Dominant industry chips
- Pentium CPUs are 32-bit and called IA-32 architecture
- Current Intel CPUs are 64-bit and called IA-64 architecture
- Many variations in the chips, cover the main ideas here

Example: The Intel IA-32 Architecture

- Supports both segmentation and segmentation with paging
 - Each segment can be 4 GB
 - Up to 16 K segments per process
 - Divided into two partitions
 - First partition of up to 8 K segments are private to process (kept in local descriptor table (LDT))
 - Second partition of up to 8K segments shared among all processes (kept in global descriptor table (GDT))

Example: The Intel IA-32 Architecture (Cont.)

- CPU generates logical address
 - Selector given to segmentation unit
 - Which produces linear addresses

- Linear address given to paging unit
 - Which generates physical address in main memory
 - Paging units form equivalent of MMU
 - Pages sizes can be 4 KB or 4 MB

Logical to Physical Address Translation in IA-32

 page r	lumber	page offset			
p_1	p_2	d			
10	10	12			

Intel IA-32 Segmentation

Intel IA-32 Paging Architecture

3/11/2019

Intel IA-32 Page Address Extensions

- 32-bit address limits led Intel to create page address extension (PAE), allowing 32-bit apps access to more than 4GB of memory space
 - Paging went to a 3-level scheme
 - Top two bits refer to a page directory pointer table
 - Page-directory and page-table entries moved to 64bits in size
 - Net effect is increasing address space to 36 bits -64GB of physical memory

Intel x86-64

- Current generation Intel x86 architecture
 - 64 bits is ginormous (> 16 exabytes)
 - In practice only implement 48 bit addressing
 - Page sizes of 4 KB, 2 MB, 1 GB
- Four levels of paging hierarchy
- Can also use PAE so virtual addresses are 48 bits and physical addresses are 52 bits

		р	age map)	page di	rectory	page		page			
	unused		level 4		pointe	r table 📊	directory	/	table		offset	
63	3 48	3 47		39	38	30 2	29	21 20		12 11		0

Questions?