
CISC 3320

C18a Main Memory:
Structure of Page Table

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

3/11/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides
provided by the authors of the textbook via
the publisher of the textbook

3/11/2019 CUNY | Brooklyn College 2

Outline

• Structure of the Page Table

• Swapping

• Example: The Intel 32 and 64-bit
Architectures

• Example: ARMv8 Architecture

3/11/2019 CUNY | Brooklyn College 3

Huge Page Table?

• Memory structures for paging can get huge using
straight-forward methods

• Consider a 32-bit logical address space

• Page size of 4 KB (212)

• Page table would have 1 million entries (232 / 212)

• If each entry is 4 bytes ➔ each process 4 MB of physical
address space for the page table alone

• Don’t want to allocate that contiguously in main memory

• How about a 64-bit logical address space?

3/11/2019 CUNY | Brooklyn College 4

Structuring Page Table

•Hierarchical Paging

•Hashed Page Tables

• Inverted Page Tables

3/11/2019 CUNY | Brooklyn College 5

Hierarchical Page Tables

• Break up the logical address space into
multiple page tables

• A simple technique is a two-level page table

• We then page the page table

3/11/2019 CUNY | Brooklyn College 6

3/11/2019 CUNY | Brooklyn College 7

Two-Level Paging: Example
• A logical address (on 32-bit machine with 1K page size) is divided into:

• a page number consisting of 22 bits

• a page offset consisting of 10 bits

• Since the page table is paged, the page number is further divided
into:

• a 10-bit page number

• a 12-bit page offset

• Thus, a logical address is as follows:

• where p1 is an index into the outer page table, and p2 is the
displacement within the page of the inner page table

• Known as forward-mapped page table

3/11/2019 CUNY | Brooklyn College 8

Address-Translation Scheme

3/11/2019 CUNY | Brooklyn College 9

64-bit Logical Address Space
• Even two-level paging scheme not sufficient

• If page size is 4 KB (212)

• Then page table has 252 entries

• If two level scheme, inner page tables could be 210 4-byte entries

• Address would look like

• Outer page table has 242 entries or 244 bytes

• One solution is to add a 2nd outer page table

• But in the following example the 2nd outer page table is still 234 bytes in size

• And possibly 4 memory access to get to one physical memory location

3/11/2019 CUNY | Brooklyn College 10

Three-Level Paging Scheme

3/11/2019 CUNY | Brooklyn College 11

Hashed Page Tables
• Common in address spaces > 32 bits

• The virtual page number is hashed into a page table

• This page table contains a chain of elements hashing to the same location

• Each element contains (1) the virtual page number (2) the value of the
mapped page frame (3) a pointer to the next element

• Virtual page numbers are compared in this chain searching for a
match

• If a match is found, the corresponding physical frame is extracted

• Variation for 64-bit addresses is clustered page tables

• Similar to hashed but each entry refers to several pages (such as 16) rather
than 1

• Especially useful for sparse address spaces (where memory references are
non-contiguous and scattered)

3/11/2019 CUNY | Brooklyn College 12

Hashed Page Table

3/11/2019 CUNY | Brooklyn College 13

Inverted Page Table
• Rather than each process having a page table and keeping track of all

possible logical pages, track all physical pages

• One entry for each real page of memory

• Entry consists of the virtual address of the page stored in that real
memory location, with information about the process that owns that
page

• Decreases memory needed to store each page table, but increases
time needed to search the table when a page reference occurs

• Use hash table to limit the search to one — or at most a few — page-
table entries

• TLB can accelerate access

• But how to implement shared memory?

• One mapping of a virtual address to the shared physical address

3/11/2019 CUNY | Brooklyn College 14

Inverted Page Table
Architecture

3/11/2019 CUNY | Brooklyn College 15

Oracle SPARC Solaris
• Consider modern, 64-bit operating system example with

tightly integrated HW

• Goals are efficiency, low overhead

• Based on hashing, but more complex

• Two hash tables

• One kernel and one for all user processes

• Each maps memory addresses from virtual to physical memory

• Each entry represents a contiguous area of mapped virtual memory,

• More efficient than having a separate hash-table entry for each page

• Each entry has base address and span (indicating the number of
pages the entry represents)

3/11/2019 CUNY | Brooklyn College 16

Oracle SPARC Solaris
• TLB holds translation table entries (TTEs) for fast

hardware lookups

• A cache of TTEs reside in a translation storage buffer (TSB)

• Includes an entry per recently accessed page

• Virtual address reference causes TLB search

• If miss, hardware walks the in-memory TSB looking for the
TTE corresponding to the address

• If match found, the CPU copies the TSB entry into the TLB and
translation completes

• If no match found, kernel interrupted to search the hash table

• The kernel then creates a TTE from the appropriate hash table and
stores it in the TSB, Interrupt handler returns control to the MMU,
which completes the address translation.

3/11/2019 CUNY | Brooklyn College 17

Questions?

• Page table too large?

• Hierarchical Paging

• Hashed Page Tables

• Inverted Page Tables

3/11/2019 CUNY | Brooklyn College 18

