CISC 3320
C18a Main Memory:

Structure of Page Table

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Acknowledgement

* These slides are a revision of the slides
provided by the authors of the textbook via
the publisher of the textbook

Outline

 Structure of the Page Table

* Swapping

» Example: The Intel 32 and 64-bit
Architectures

» Example: ARMv8 Architecture

Huge Page Table?

« Memory structures for paging can get huge using
straight-forward methods

« Consider a 32-bit logical address space
* Page size of 4 KB (2%?)
* Page table would have 1 million entries (232 / 212)

« If each entry is 4 bytes = each process 4 MB of physical
address space for the page table alone

« Don't want to allocate that contiguously in main memory

« How about a 64-bit logical address space?

Structuring Page Table

* Hierarchical Paging

* Hashed Page Tables
* Inverted Page Tables

Hierarchical Page Tables

* Break up the logical address space into
multiple page tables

» A simple technique is a two-level page table
» We then page the page table

3/11/2019

outer page
table

\ .

| |
/ & 100 ——
500 b
\ L / .
T 100 500
708 F— :
\
= 708
9?9 \ 900 .
900] :
page of 929
page table
page table o
memory

CUNY | Brooklyn College

Two-Level Paging: Example

A logical address (on 32-bit machine with 1K page size) is divided into:
* a page number consisting of 22 bits
* apage offset consisting of 10 bits

STce the page table is paged, the page number is further divided
into:

 a 10-bit page number
« a12-bit page offset

Thus, a logical address is as follows: page number page offset
P1 P> d
10 10 12

where p; is an index into the ou’rer page table, and ‘3 is the
dlsplacemen‘r within the page of the ifner page table

Known as forward-mapped page table

Address-Translation Scheme

logical address

Pt | P2 | d

.

>

=

outer page d
table {

page of
page table

3/11/2019 CUNY | Brooklyn College

64-bit Logical Address Space

 Even two-level paging scheme not sufficient
 If page size is 4 KB (212)
« Then page table has 2°2 entries
« If two level scheme, inner page tables could be 21° 4-byte entries

« Address would look like

outer page inner page offset
P1 P2 d
42 10 12

 Outer page table has 24? entries or 244 bytes
* One solution is o add a 2" outer page table

* But in the following example the 2" outer page table is still 234 bytes in size

And possibly 4 memory access to get to one physical memory location

Three-Level Paging Scheme

outer page Inner page offset
P1 P2 d
42 10 12
2nd outer page . outer page | innerpage , offset
P1 p> Ps d

32 10 10 12

3/11/2019 CUNY | Brooklyn College 11

Hashed Page Tables

« Common in address spaces > 32 bits
* The virtual page number is hashed into a page table

« This page table contains a chain of elements hashing to the same location

 Each element contains (1) the virtual page humber (2) the value of the
mapped page frame (3) a pointer to the next element

* Virtual page numbers are compared in this chain searching for a
match

« If a match is found, the corresponding physical frame is extracted
* Variation for 64-bit addresses is clustered page tables

* Similar to hashed but each entry refers to several pages (such as 16) rather
than 1

« Especially useful for sparse address spaces (where memory references are
non-contiguous and scattered)

Hashed Page Table

physical
logical address l address
P d r d />
A
lEEL NS
hash table

3/11/2019 CUNY | Brooklyn College

physical
memory

13

Inverted Page Table

 Rather than each process having a page table and keeping track of all
possible logical pages, track all physical pages

« One entry for each real page of memory

 Entry consists of the virtual address of the page stored in that real
memory location, with information about the process that owns that

page

« Decreases memory needed to store each page table, but increases
time needed to search the table when a page reference occurs

 Use hash table to limit the search to one — or at most a few — page-
table entries

« TLB can accelerate access

* But how to implement shared memory?

« One mapping of a virtual address to the shared physical address

Inverted Page Table

Architecture

logical
address l
d

physical
address

CPU —>pd| p | d i

search l

R—(._J

=,
o
i)

page table

3/11/2019 CUNY | Brooklyn College

P>

physical
memory

Oracle SPARC Solaris

« Consider modern, 64-bit operating system example with
tightly integrated HW

* Goals are efficiency, low overhead
* Based on hashing, but more complex
« Two hash tables

* One kernel and one for all user processes
« Each maps memory addresses from virtual fo physical memory

« Each entry represents a contiguous area of mapped virtual memory,

* More efficient than having a separate hash-table entry for each page

« Each entry has base address and span (indicating the number of
pages the entry represents)

Oracle SPARC Solaris

« TLB holds translation table entries (TTEs) for fast
hardware lookups

A cache of TTEs reside in a translation storage buffer (TSB)

* Includes an entry per recently accessed page

 Virtual address reference causes TLB search

 If miss, hardware walks the in-memory TSB looking for the
TTE corresponding to the address

« If match found, the CPU copies the TSB entry into the TLB and
translation completes

« If no match found, kernel interrupted to search the hash table

* The kernel then creates a TTE from the appropriate hash table and
stores it in the TSB, Interrupt handler returns control fo the MMU,
which completes the address translation.

Questions?

* Page table too large?

 Hierarchical Paging
« Hashed Page Tables
* Inverted Page Tables

