CISC 3320 C14d Evaluating CPU Scheduling Algorithm

Hui Chen

Department of Computer & Information Science CUNY Brooklyn College

Acknowledgement

 These slides are a revision of the slides provided by the authors of the textbook via the publisher of the textbook

Outline

- CPU Scheduling Algorithm Evaluation
 - Methodology
 - General approaches
 - Deterministic
 - Probabilistic
 - Simulation

Algorithm Evaluation: Purpose

- Purpose is to answer the question
- How to select CPU-scheduling algorithm for an OS?

Method

- Determine criteria, then evaluate algorithms using one or the combinations of
 - Deterministic modeling
 - Queueing modeling (probabilistic)
 - Simulation

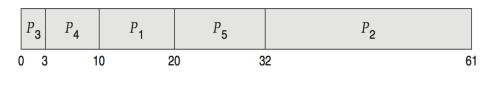
Deterministic Modeling

- Deterministic modeling
 - Type of analytic evaluation
 - Takes a particular predetermined workload and defines the performance of each algorithm for that workload

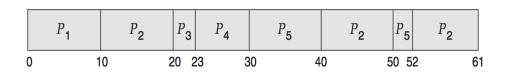
Deterministic Modeling: Example

- Determine criterion to be minimum average waiting time
- Consider 5 processes arriving at time 0

Process	Burst Time
P_1	10
P_2	29
P_3	3
P_4	7
P_5	12


Deterministic Modeling: Example

- For each algorithm, calculate minimum average waiting time
- Simple and fast, but requires exact numbers for input, applies only to those inputs
 - FCS is 28ms:
 - Non-preemptive SFJ is 13ms:
 - RR is 23ms:

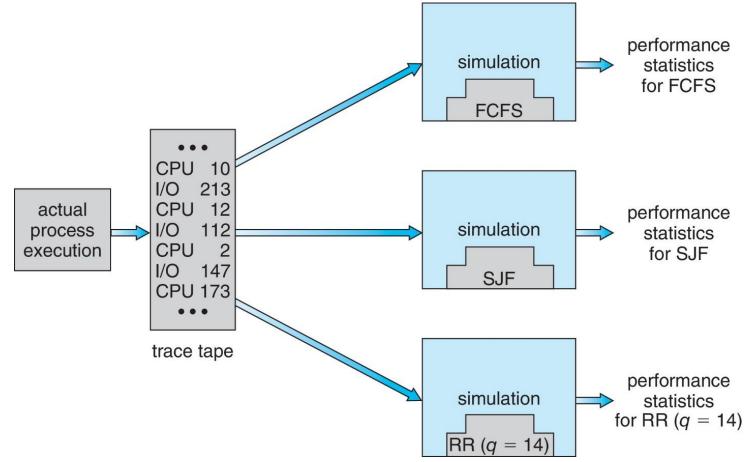

• FCS is 28ms:

• Non-preemptive SFJ is 13ms:

• RR is 23ms:

Queueing Models

- Describes the arrival of processes, and CPU and I/O bursts probabilistically
 - Commonly exponential, and described by mean
 - Computes average throughput, utilization, waiting time, etc
- Computer system described as network of servers, each with queue of waiting processes
 - Knowing arrival rates and service rates
 - Computes utilization, average queue length, average wait time, etc


Little's Formula

- *n* = average queue length
- W = average waiting time in queue
- λ = average arrival rate into queue
- Little's law in steady state, processes leaving queue must equal processes arriving, thus: $n = \lambda \times W$
 - Valid for any scheduling algorithm and arrival distribution
- For example, if on average 7 processes arrive per second, and normally 14 processes in queue, then average wait time per process = 2 seconds

Simulations

- Queueing models limited
- Simulations more accurate
 - Programmed model of computer system
 - Clock is a variable
 - Gather statistics indicating algorithm performance
 - Data to drive simulation gathered via
 - Random number generator according to probabilities
 - Distributions defined mathematically or empirically
 - Trace tapes record sequences of real events in real systems

Evaluation of CPU Schedulers by Simulation

Implementation

- Even simulations have limited accuracy
- Just implement new scheduler and test in real systems
 - High cost, high risk
 - Environments vary
- Most flexible schedulers can be modified persite or per-system
- Or APIs to modify priorities
- But again environments vary

Questions?

- Evaluating CPU Scheduling Evaluation
- Methodology
- General approaches
 - Deterministic
 - Probabilistic
 - Simulation