
CISC 3320

C14c. CPU Scheduling: 
Operating System Examples

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

2/20/2019 1CUNY | Brooklyn College



Acknowledgement

• These slides are a revision of the slides 
provided by the authors of the textbook via 
the publisher of the textbook

2/20/2019 CUNY | Brooklyn College 2



Outline

• Operating Systems Examples

• Linux scheduling

• Windows scheduling

• Solaris scheduling

• Algorithm Evaluation

2/20/2019 CUNY | Brooklyn College 3



Linux Scheduling

• Prior to kernel version 2.5, ran variation of 
standard UNIX scheduling algorithm

• Version 2.5 moved to constant order O(1) 
scheduling time

• “Complete Fair Scheduler” since version 
2.6.23

2/20/2019 CUNY | Brooklyn College 4



Linux Variation of Unix 
Scheduling
• Not designed with SMP systems in mind

• Did not adequately support systems with multiple 
processors. 

• In addition, it resulted in poor performance for 
systems with a large number of runnable 
processes.

2/20/2019 CUNY | Brooklyn College 5



Linux “O(1)” Scheduler
• Preemptive, priority based

• Two priority ranges: time-sharing and real-time

• Real-time range from 0 to 99 and nice value from 100 to 140

• Map into  global priority with numerically lower values indicating higher 
priority

• Higher priority gets larger quantum

• Task run-able as long as time left in time slice (active)

• If no time left (expired), not run-able until all other tasks use their 
slices

• All run-able tasks tracked in per-CPU runqueue data structure

• Two priority arrays (active, expired)

• Tasks indexed by priority

• When no more active, arrays are exchanged

• Poor response times for interactive processes

2/20/2019 CUNY | Brooklyn College 6



Linux “CFS” Scheduler

• Scheduling class

• Time quantum

• Virtual runtime

• Data structure for the “ready queue”

• Real-time scheduling

• Priority and nice value

2/20/2019 CUNY | Brooklyn College 7



Scheduling Class

• Each process has specific priority

• Scheduler picks highest priority task in 
highest scheduling class

• Rather than quantum based on fixed time 
allotments, based on proportion of CPU time

• 2 scheduling classes included, others can be 
added

1.default

2.real-time

2/20/2019 CUNY | Brooklyn College 8



Quantum

• Quantum calculated based on nice value 
from -20 to +19

• Lower value is higher priority

• Calculates target latency – interval of time 
during which task should run at least once

• Target latency can increase if say number of 
active tasks increases

2/20/2019 CUNY | Brooklyn College 9



Virtual Rumtime

• CFS scheduler maintains per task virtual run 
time in variable vruntime

• Associated with decay factor based on priority 
of task – lower priority is higher decay rate

• Normal default priority (nice = 0) yields virtual 
run time = actual run time

• To decide next task to run, scheduler picks 
task with lowest virtual run time

2/20/2019 CUNY | Brooklyn College 10



“Fair” Scheduling: Example
• Two processes have the same nice values

• P1: I/O bound

• P2: CPU bound

• Observation
• I/O bound task run only for short periods before blocking 

for additional I/O

• CPU-bound task will exhaust its time period whenever it 
has an opportunity to run on a CPU

• Result
• P1 will smaller vruntime than P2

• P1 will have higher priority than P1

• When P1 is fulfilled an I/O request, P1 will empty P2 (P1 
waited long enough for I/O)

2/20/2019 CUNY | Brooklyn College 11



CFS Queue

• Runnable tasks (i.e., processes in the Ready 
state) are placed in a balanced binary search 
tree whose key is based on the value of 
vruntime (a black-red tree). 

2/20/2019 CUNY | Brooklyn College 12



Selecting a Task

• Taks O(n) time, where n is the number of 
tasks

2/20/2019 CUNY | Brooklyn College 13



Linux Real-time Scheduling

• Real-time scheduling according to POSIX.1b

• Two real-time scheduling policies

• SCHED_FIFO or the SCHED_RR

• Real-time tasks have static priorities, ranging 0 
~ 99 (vs. normal tasks 100 ~ 139)

• Normal tasks are assigned a priority based on 
their nice values

• Nice value of -20 maps to global priority 100

• Nice value of +19 maps to priority 139

2/20/2019 CUNY | Brooklyn College 14



Linux Priority

2/20/2019 CUNY | Brooklyn College 15



Linux Load Balancing

• Linux supports load balancing, but is also 
NUMA-aware.

• Scheduling domain is a set of CPU cores 
that can be balanced against one another. 

• Domains are organized by what they share 
(i.e. cache memory.) 

• Goal is to keep threads from migrating between 
domains.

2/20/2019 CUNY | Brooklyn College 16



2/20/2019 CUNY | Brooklyn College 17



Questions?

• Evolution of Linux scheduling

• Linux CFS scheduling

• Scheduling class

• Time quantum

• Virtual runtime

• Data structure for the “ready queue”

• Real-time scheduling

• Priority and nice value

2/20/2019 CUNY | Brooklyn College 18



Windows Scheduling

• In Windows kernel, the scheduler is called 
“dispatcher”

• Windows uses priority-based preemptive 
scheduling

• Highest-priority thread runs next

• Thread runs until (1) blocks, (2) time quantum 
ends, or (3) preempted by higher-priority thread

2/20/2019 CUNY | Brooklyn College 19



Windows Priority

• 32-level priority scheme

• Variable class is 1-15, real-time class is
16-31

• Real-time threads can preempt non-real-time

• Priority 0 is memory-management thread

• Queue for each priority

• If no run-able thread, runs idle thread

2/20/2019 CUNY | Brooklyn College 20



Windows Priority Class
• Win32 API identifies several priority classes to which a process can 

belong

• REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS, 
ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CLASS, 
BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS

• All are variable except REALTIME

• A thread within a given priority class has a relative priority

• TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL, 
BELOW_NORMAL, LOWEST, IDLE

• Priority class and relative priority combine to give numeric priority

• Base priority is NORMAL within the class

• If quantum expires, priority lowered, but never below base

2/20/2019 CUNY | Brooklyn College 21



2/20/2019 CUNY | Brooklyn College 22



Variable Priority

• Priorities are variable except REALTIME

• If wait occurs, priority boosted depending on what 
was waited for

• Foreground window given 3x priority boost

• Windows 7 added user-mode scheduling (UMS) 

• Applications create and manage threads independent of 
kernel

• For large number of threads, much more efficient

• UMS schedulers come from programming language 
libraries like C++ Concurrent Runtime (ConcRT) framework

2/20/2019 CUNY | Brooklyn College 23



Questions?

• Windows scheduling

• Priority

2/20/2019 CUNY | Brooklyn College 24



Solaris
• Priority-based scheduling

• Six classes available

• Time sharing (default) (TS)

• Interactive (IA)

• Real time (RT)

• System (SYS)

• Fair Share (FSS)

• Fixed priority (FP)

• Given thread can be in one class at a time

• Each class has its own scheduling algorithm

• Time sharing is multi-level feedback queue

• Loadable table configurable by sysadmin

2/20/2019 CUNY | Brooklyn College 25



2/20/2019 CUNY | Brooklyn College 26



2/20/2019 CUNY | Brooklyn College 27



Solaris Priority

• Scheduler converts class-specific priorities 
into a per-thread global priority

• Solaris uses priority-based preemptive 
scheduling

• Highest-priority thread runs next

• Thread runs until (1) blocks, (2) time quantum 
ends, or (3) preempted by higher-priority thread

• Multiple threads at same priority selected via RR

2/20/2019 CUNY | Brooklyn College 28



Questions

• Solaris priority

2/20/2019 CUNY | Brooklyn College 29



Algorithm Evaluation

• How to select CPU-scheduling algorithm for 
an OS?

• Determine criteria, then evaluate algorithms

• Deterministic modeling

• Type of analytic evaluation

• Takes a particular predetermined workload and 
defines the performance of each algorithm  for 
that workload

• Consider 5 processes arriving at time 0:



Deterministic Evaluation

• For each algorithm, calculate minimum average waiting time

• Simple and fast, but requires exact numbers for input, 
applies only to those inputs

• FCS is 28ms:

• Non-preemptive SFJ is 13ms:

• RR is 23ms:



Queueing Models
• Describes the arrival of processes, and 

CPU and I/O bursts probabilistically

• Commonly exponential, and described by mean

• Computes average throughput, utilization, 
waiting time, etc

• Computer system described as network of 
servers, each with queue of waiting 
processes

• Knowing arrival rates and service rates

• Computes utilization, average queue length, 
average wait time, etc



Little’s Formula
• n = average queue length

• W = average waiting time in queue

• λ = average arrival rate into queue

• Little’s law – in steady state, processes leaving 
queue must equal processes arriving, thus:

n = λ x W

• Valid for any scheduling algorithm and arrival 
distribution

• For example, if on average 7 processes arrive 
per second, and normally 14 processes in queue, 
then average wait time per process = 2 seconds



Simulations

• Queueing models limited

• Simulations more accurate

• Programmed model of computer system

• Clock is a variable

• Gather statistics  indicating algorithm performance

• Data to drive simulation gathered via

• Random number generator according to probabilities

• Distributions defined mathematically or empirically

• Trace tapes record sequences of real events in real 
systems



Evaluation of CPU Schedulers by Simulation



Implementation

Even simulations have limited accuracy

Just implement new scheduler and test in real systems

High cost, high risk

Environments vary

Most flexible schedulers can be modified per-site or per-system

Or APIs to modify priorities

But again environments vary



Silberschatz, Galvin and Gagne ©2018Operating System Concepts – 10th Edition

End of Chapter 5



Objectives

• Describe various CPU scheduling algorithms

• Assess CPU scheduling algorithms based on 
scheduling criteria

• Explain the issues related to multiprocessor and 
multicore scheduling

• Describe various real-time scheduling 
algorithms

• Describe the scheduling algorithms used in the 
Windows, Linux, and Solaris operating systems

• Apply modeling and simulations to evaluate CPU 
scheduling algorithms


