
CISC 3320

C14a. Thread and
Multiprocessor Scheduling

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

2/28/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides
provided by the authors of the textbook via
the publisher of the textbook.

2/28/2019 CUNY | Brooklyn College 2

Outline

• Thread Scheduling

• Multi-Processor Scheduling

• Real-Time CPU Scheduling

• Operating Systems Examples

• Algorithm Evaluation

2/28/2019 CUNY | Brooklyn College 3

Thread Scheduling

• Distinction between user-level and kernel-
level threads

• When threads supported, threads
scheduled, not processes

• User and kernel threads

• One to one

• Many to one

• Many to many

2/28/2019 CUNY | Brooklyn College 4

User and Kernel Threads

• Many-to-one and many-to-many models,
thread library schedules user-level threads
to run on LWP (light-weight process)

• Known as process-contention scope (PCS) since
scheduling competition is within the process

• Typically done via priority set by programmer

• Kernel thread scheduled onto available CPU
is system-contention scope (SCS) –
competition among all threads in system

2/28/2019 CUNY | Brooklyn College 5

Example: Pthread Scheduling

• API allows specifying either PCS or SCS during
thread creation

• PTHREAD_SCOPE_PROCESS schedules threads
using PCS scheduling

• PTHREAD_SCOPE_SYSTEM schedules threads using
SCS scheduling

• Can be limited by OS

• Linux supports only PTHREAD_SCOPE_SYSTEM

• Open Solaris supports both before Solaris 9, but
makes no distinction between the two since Solaris 9

2/28/2019 CUNY | Brooklyn College 6

Pthread Scheduling API

• pthread_attr_getscope

• pthread_attr_setscope

2/28/2019 CUNY | Brooklyn College 7

Questions?

• Thread scheduling

• PCS and SCS

• Pthread example

2/28/2019 CUNY | Brooklyn College 8

Multiprocessor Scheduling

• CPU scheduling more complex when multiple
CPUs are available

• Multiprocess may be any one of the following
architectures:

• Multicore CPUs

• Multithreaded cores

• NUMA systems

• Heterogeneous multiprocessing

2/28/2019 CUNY | Brooklyn College 9

Symmetric Multiprocessing

• Symmetric multiprocessing (SMP) is where
each processor is self scheduling.

1. All threads may be in a common ready queue

2. Each processor may have its own private queue
of threads

2/28/2019 CUNY | Brooklyn College 10

2/28/2019 CUNY | Brooklyn College 11

Multicore Processors

• Recent trend to place multiple processor
cores on same physical chip

• Faster and consumes less power

2/28/2019 CUNY | Brooklyn College 12

Memory Stall and Multithread
Processor
• Memory stall

• e.g., compare these two instructions

• mov edx, eax

• mov (1000), eax

• Observation

• memory is much slower than registers

• In the second instruction above, the processor
must wait significant amount of data for the
data to be available

2/28/2019 CUNY | Brooklyn College 13

Memory Stall

2/28/2019 CUNY | Brooklyn College 14

Addressing Memory Stall

• Takes advantage of memory stall to make progress
on another (hardware) thread while memory
retrieve happens

• Many recent hardware designs have implemented
multithreaded processing cores

• Two (or more) hardware threads are assigned to each
core.

• In this way, if one hardware thread stalls while waiting for
memory, the core can switch to another thread.

• Called chip multithreading (CMT)

• Intel calls it “hyperthreading”

2/28/2019 CUNY | Brooklyn College 15

Chip Multithreading

• Each core has > 1 hardware threads.

• If one thread has a memory stall, switch to
another thread!

• Each (hardware) thread appears to be a
(logical) CPU to an operating system

2/28/2019 CUNY | Brooklyn College 16

Multithreaded Multicore
System: Example
• On a quad-core system

with 2 hardware
threads per core, the
operating system sees
8 logical processors.

2/28/2019 CUNY | Brooklyn College 17

Multithreaded Multicore
System: Scheduling
• Two levels of scheduling:

• The operating system deciding which software
thread to run on a logical CPU

• How each core decides which hardware thread to
run on the physical core.

2/28/2019 CUNY | Brooklyn College 18

2/28/2019 CUNY | Brooklyn College 19

Load Balancing

• If SMP, need to keep all CPUs loaded for efficiency

• Load balancing attempts to keep workload evenly
distributed

• Push migration

• periodic task checks load on each processor, and if found
pushes task from overloaded CPU to other CPUs

• Pull migration

• idle processors pulls waiting task from busy processor

2/28/2019 CUNY | Brooklyn College 20

Processor Affinity

• A thread having affinity for a processor (i.e.
“processor affinity”)

• When a thread has been running on one
processor, the cache contents of that processor
stores the memory accesses by that thread.

2/28/2019 CUNY | Brooklyn College 21

Processor Cache and Scheduling

• If a thread is scheduled on a new processor,
that processor's cache must be repopulated.

• With private, per-processor ready queues, a thread
is always scheduled on the same processor and can
therefore benefit from the contents of a warm
cache.

• If the thread migrates to another processor, e.g.,
due to load balancing. The contents of cache memory
must be invalidated for the first processor, and the
cache for the second processor must be repopulated.

2/28/2019 CUNY | Brooklyn College 22

Setting Processor Affinity

• Soft affinity

• the operating system attempts to keep a thread running on
the same processor, but no guarantees.

• Hard affinity

• allows a process to specify a set of processors it may run
on.

• Example

• Linux implements both soft affinity

• The sched_setaffinity() system call supports hard affinity
by allowing a thread to specify the set of CPUs on which it
is eligible to run.

2/28/2019 CUNY | Brooklyn College 23

NUMA and CPU Scheduling

• Non-uniform memory access

• Fast and slow memory access

• If the operating system is NUMA-aware, it
will assign memory closes to the CPU the
thread is running on.

2/28/2019 CUNY | Brooklyn College 24

2/28/2019 CUNY | Brooklyn College 25

Questions?

• Multiprocessor scheduling

• Two level scheduling for chip multithreading

• Loading balancing

• Processor affinity, cache, and scheduling

• NUMA and scheduling

2/28/2019 CUNY | Brooklyn College 26

Heterogeneous Multiprocessing

• Symmetric multiprocessing (SMP)

• All processors are identical in terms of their
capabilities

• Heterogenous multiprocessing (HMP)

• Although running the same instructors,
processors may vary by their clock speed or
power management

2/28/2019 CUNY | Brooklyn College 27

HMP Example

• ARM processor's big Little architecture

• higher-performance big cores and many energy
efficient LITTLE cores

• Big cores consume greater energy and therefore
should only be used for short periods of time.

• Likewise, little cores use less energy and can
therefore be used for longer periods.

• CPU scheduling should take these into
consideration

2/28/2019 CUNY | Brooklyn College 28

Questions?

• Concept of HMP

• Scheduling for HMP

2/28/2019 CUNY | Brooklyn College 29

