
CISC 3320

C12e: Examples of Operating
Systems Threads

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

2/20/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides
provided by the authors of the textbook

2/20/2019 CUNY | Brooklyn College 2

Outline

• Design and Implementation of Operating
System Examples

• POSIX Threads

• Windows Threads

2/20/2019 CUNY | Brooklyn College 3

Operating System Examples

• Windows Threads

• Linux Threads

2/20/2019 CUNY | Brooklyn College 4

Windows Threads
• Windows API

• Primary API for Windows applications

• Implements kernel-level threads

• Implements the one-to-one mapping (between user space and kernel
space threads)

• Each thread contains

• A thread id

• Register set representing state of processor

• Separate user and kernel stacks for when thread runs in user mode or kernel
mode

• Private data storage area used by run-time libraries and dynamic link libraries
(DLLs)

• The register set, stacks, and private storage area are known as the
context of the thread

2/20/2019 CUNY | Brooklyn College 5

Windows Threads: Data
Structures
• The primary data structures of a thread

include:

• ETHREAD (executive thread block) – includes pointer
to process to which thread belongs and to KTHREAD,
in kernel space

• KTHREAD (kernel thread block) – scheduling and
synchronization info, kernel-mode stack, pointer to
TEB, in kernel space

• TEB (thread environment block) – thread id, user-
mode stack, thread-local storage, in user space

2/20/2019 CUNY | Brooklyn College 6

2/20/2019 CUNY | Brooklyn College 7

Linux Threads

• Linux refers to them as tasks rather than
threads

• Thread creation is done through clone()
system call

• Both fork() and clone() create a child task

• clone() allows a child task to share the
address space of the parent task

• Remark: Linux does not really distinguish
between processes and threads

2/20/2019 CUNY | Brooklyn College 8

Linux Thread: Clone System Call

• Linux PCB, the task_struct structure contains pointers to
other data structures

• e.g., the list of open files, signal-handling information, and virtual
memory.

• The fork() system call

• When it is invoked, a new task is created, along with a copy of all the
associated data structures of the parent process.

• The clone() system call

• A new task is also created when the clone() system call is made.

• However, rather than copying all data structures, the new task
points to the data structures of the parent task, depending on the
set of flags passed to clone().

2/20/2019 CUNY | Brooklyn College 9

Flags Control Behavior of the
clone() System Call
• The flag controls whether data in the

task_struct are shared or copied between
child and parent tasks

2/20/2019 CUNY | Brooklyn College 10

Questions?

• Design and implementation of threads in
Window

• Design and implementation of threads in
Linux

2/20/2019 CUNY | Brooklyn College 11

