CISC 3320
Cl12e: Examples of Operating

Systems Threads

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College



Acknowledgement

* These slides are a revision of the slides
provided by the authors of the textbook



Outline

* Design and Implementation of Operating
System Examples

« POSIX Threads
 Windows Threads



Operating System Examples

* Windows Threads
e Linux Threads



Windows Threads

« Windows APT
* Primary API for Windows applications
« Implements kernel-level threads

* Implements the one-to-one mapping (between user space and kernel
space threads)

 Each thread contains
* A thread id
 Register set representing state of processor

 Separate user and kernel stacks for when thread runs in user mode or kernel
mode

* Private data storage area used by run-time libraries and dynamic link libraries
(DLLs)

* The register set, stacks, and private storage area are known as the
context of the thread



Windows Threads: Data

Structures

* The primary data structures of a thread
include:

« ETHREAD (executive thread block) - includes pointer
to process to which thread belongs and to KTHREAD,
in kernel space

« KTHREAD (kernel thread block) - scheduling and
synchronization info, kernel-mode stack, pointer to
TEB, in kernel space

« TEB (thread environment block) - thread id, user-
mode stack, thread-local storage, in user space



2/20/2019

ETHREAD

thread start

address
pointer to
parent process KTHREAD
scheduling
and
synchronization
. information
kernel TEB
stack
thread identifier
° user
. stack
thread-local
storage
kernel space user space

CUNY | Brooklyn College




Linux Threads

* Linux refers to them as tasks rather than
threads

* Thread creation is done through clone ()
system call

« Both fork() and clone() create a child task

* clone () allows a child task to share the
address space of the parent task

* Remark: Linux does not really distinguish
between processes and threads



Linux Thread: Clone System Call

* Linux PCB, the task_struct structure contains pointers to
other data structures

+ eg., the list of open files, signal-handling information, and virtual
memory.

« The fork() system call

« When it is invoked, a new task is created, along with a copy of all the
associated data structures of the parent process.

 The clone() system call
« A new task is also created when the clone() system call is made.

« However, rather than copying all data structures, the new task
points to the data structures of the parent task, depending on the
set of flags passed to clone().



Flags Control Behavior of the

clone() System Call

 The flag controls whether data in the
task_struct are shared or copied between

child and parent tasks

flag meaning
CLONE FS File-system information is shared.
CLONE VM The same memory space is shared.
CLONE SIGHAND Signal handlers are shared.
CLONE FILES The set of open files is shared.

2/20/2019 CUNY | Brooklyn College 10



Questions?

» Design and implementation of threads in
Window

» Design and implementation of threads in
Linux



