
CISC 3320

C12a: Threads and
Multithread Model

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

3/6/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides
provided by the authors of the textbook

3/6/2019 CUNY | Brooklyn College 2

Outline

• Overview

• Multicore Programming

• Multithreading Models

• Thread Libraries

• Implicit Threading

• Threading Issues

• Operating System Examples

3/6/2019 CUNY | Brooklyn College 3

Recap: Multiprogramming and
Multiprocess Architecture
• OS loads multiple programs and execute

them concurrently

• Notation of process

• Independent processes

• Cooperating processes

3/6/2019 CUNY | Brooklyn College 4

Recap: Multiprocess
Architecture
• Example applications

• Chrome Web browser

• The instructor’s Monte Carlo simulation
application

3/6/2019 CUNY | Brooklyn College 5

Recap: New Renderer Created
for Each Website Opened

3/6/2019 CUNY | Brooklyn College 6

Recap: Computation Speed-up
by Cooperating Processes
• Estimate  using a Monte Carlo simulation

• What if a machine has multiple CPU cores? Can
we take advantage of it?

3/6/2019 CUNY | Brooklyn College 7

Motivation for Threads

• Multiprocess architecture

• Cost (or overhead)

• Process creation and switching are heavy-weight

• Project 2: quantifying process context switching cost

• Communication

• Inter-process communications (slow or complex)

3/6/2019 CUNY | Brooklyn College 8

Introducing Multithreaded
Processes

3/6/2019 CUNY | Brooklyn College 9

Example: Observing Threads
and Threads Switching
• We can write an application to run multiple

functions concurrently, and each becomes
thread

• Example: implement it in UNIX systems in
user mode

• Understand concept of context

• Understand context switching

• We will examine this example closer again
when we discuss CPU scheduling

3/6/2019 CUNY | Brooklyn College 10

Questions?

• Some motivations for threads

• Concepts of threads and comparison with
process

3/6/2019 CUNY | Brooklyn College 11

Benefits of Multithread
Architecture
• Improving responsiveness

• Easing resource sharing

• Can be made more economic (less overhead)

• Can be more scalable (to multicore
architecture)

3/6/2019 CUNY | Brooklyn College 12

Multiprocess and Multithread
Architectures
• Benefits of threads when compared to

multiprocess architecture

3/6/2019 CUNY | Brooklyn College 13

Examples of Multiprocess and
Multithread Architectures

3/6/2019 CUNY | Brooklyn College 14

Multithread Architecture:
Responsiveness
• May allow continued execution if part of

process is blocked

• Especially important for user interfaces

• Example: let’s look at even-programming for
graphical user interface

3/6/2019 CUNY | Brooklyn College 15

Event-Driven Programming for
Graphical User Interface
• The main body of the program is an event loop (in pseudo code)

do {

e = getNextEvent()

processEvent(e)

} while (e != EXIT_EVENT)

• This event loop typically implemented by the platform, and
runs in a thread

• The events are in a queue called event queue

• Users write event handler routines (user’s programs) to
process events

• processEvent in the above will invoke your event handler routines

• Event thus drives user’s programs

3/6/2019 CUNY | Brooklyn College 16

Event-Loop Runs in a Thread

• Event loop

do {

e = getNextEvent()

processEvent(e)

} while (e != EXIT_EVENT)

• What happens if the processEvent method
takes a long time to complete?

• Also consider the events are in a queue called
event queue (capacity?)

3/6/2019 CUNY | Brooklyn College 17

Example Application: The 
Estimator as a GUI application
• Two versions

• Without thread and with thread (for 
estimation)

• Observe how responsive the application
becomes when we increase the random
points generated.

3/6/2019 CUNY | Brooklyn College 18

Recap: Multithread
Architecture: Responsiveness
• May allow continued execution if part of

process is blocked

• Especially important for user interfaces

• Example: let’s look at even-programming for
graphical user interface

3/6/2019 CUNY | Brooklyn College 19

Expected to be
completed very
quickly (a fraction
of a second)

• Event loop
do {

e = getNextEvent()
processEvent(e)

} while (e != EXIT_EVENT)

Questions?

• Improve application responsiveness via a
multithreaded architecture

3/6/2019 CUNY | Brooklyn College 20

Benefits of Multithread
Architecture: Resource Sharing
• Threads share resources of process, easier

than shared memory or message passing

3/6/2019 CUNY | Brooklyn College 21

Benefits of Multithread
Architecture: Scalability
• A process can take advantage of multicore

architectures using multiple threads

3/6/2019 CUNY | Brooklyn College 22

Example: The Multiprocess or
Multithread  Estimator
• Estimate  using a Monte Carlo simulation

• What if a machine has multiple CPU cores? Can we take
advantage of it?

• Case 1: we try 80000000 trials on 1 CPU core (1 worker process
or 1 worker thread)

• Case 2: we try 80000000/2 trials for each process on 2 CPU
core (2 worker processes or 2 worker threads)

• Case 3: we try 80000000/4 trials for each process on 4 CPU
core (4 worker processes or 2 worker threads)

• Worker processes need to send master process the
results (in this example, via a named pipe)

• Worker threads write results to the heap or the global
variables

3/6/2019 CUNY | Brooklyn College 23

Example: The Multiprocess or
Multithread  Estimator
• Your observations?

• Which methods of sharing data is more
convenient for programmers?

• Do you observe computation speed up?

• Based on our experiment, are threads always
light-weight?

3/6/2019 CUNY | Brooklyn College 24

Questions?

• Multiprocess architecture vs. multithread
architecture

• Resource sharing?

• Scalability?

3/6/2019 CUNY | Brooklyn College 25

Benefits of Multithread
Architecture: Economy
• Threads creation is generally cheaper than

process creation

• Thread context switching is generally of
lower overhead than process context
switching

• Project 2: quantifying cost of context
switch

3/6/2019 CUNY | Brooklyn College 26

Questions?
• Benefits of Multithread Architecture

• Responsiveness

• may allow continued execution if part of process is blocked,
especially important for user interfaces

• Resource Sharing

• threads share resources of process, easier than shared memory or
message passing

• Economy

• cheaper than process creation, thread switching lower overhead than
context switching

• Scalability

• process can take advantage of multicore architectures

3/6/2019 CUNY | Brooklyn College 27

Multicore Programming
• Multicore or multiprocessor systems putting pressure on

programmers, challenges include:

• Dividing activities

• Balance

• Data splitting

• Data dependency

• Testing and debugging

• Parallelism implies a system can perform more than one
task simultaneously

• Concurrency supports more than one task making
progress

• Single processor / core, scheduler providing concurrency
3/6/2019 CUNY | Brooklyn College 28

Concurrency vs. Parallelism

• Concurrent execution on single-core system

• Parallelism on a multi-core system

3/6/2019 CUNY | Brooklyn College 29

Multicore Programming

• Types of parallelism

• Data parallelism – distributes subsets of the
same data across multiple cores, same operation
on each

• Task parallelism – distributing threads across
cores, each thread performing unique operation

3/6/2019 CUNY | Brooklyn College 30

Data and Task Parallelism

3/6/2019 CUNY | Brooklyn College 31

Performance Gain via Parallelism

• How much do we gain in this example?

• Is this example data parallelism or task
parallelism?

• If it is data parallelism, can you revise this
example to exhibit task parallelism or vice
versus?

• How much can we gain from parallelism?

3/6/2019 CUNY | Brooklyn College 32

Amdahl’s Law

• Identifies performance gains from adding
additional cores to an application that has
both serial and parallel components

• S is serial portion

• N processing cores

3/6/2019 CUNY | Brooklyn College 33

Amdahl’s Law: Example

• That is, if application is 75% parallel / 25% serial

• 1/(0.25 + 0.75/2) = 1.6

• moving from 1 to 2 cores results in speedup of 1.6 times

• As N approaches infinity, speedup approaches 1 / S

• lim
𝑁→∞

1

𝑆+
1−𝑆

𝑁

=
1

𝑆

• Serial portion of an application has disproportionate
effect on performance gained by adding additional
cores

3/6/2019 CUNY | Brooklyn College 34

3/6/2019 CUNY | Brooklyn College 35

Questions?

• Amdahl’s Law

• Does the law take into account
contemporary multicore systems?

• Recall: the two versions of the  estimator

3/6/2019 CUNY | Brooklyn College 36

User Threads and Kernel
Threads
• User threads - management done by user-level threads library

• Three primary thread libraries:

• POSIX Pthreads

• Windows threads

• Java threads

• Kernel threads - Supported by the Kernel

• Examples – virtually all general purpose operating systems, including:

• Windows

• Linux

• Mac OS X

• iOS

• Android

3/6/2019 CUNY | Brooklyn College 37

Threads In User or Kernel
Space
• In the user space, or in the kernel

3/6/2019 CUNY | Brooklyn College 38

User- and kernel-level threads [Figure 2-16 in Tanenbaum & Bos, 2014]

Efficiency and Concurrency

• Kernel threads are more expensive to create

• Can support multiple processors

• User threads can be blocked by the process

• Less concurrency, in particular, on
multiprocessor/multicore systems

• Recall: the user mode two thread program
discussed at the beginning

3/6/2019 CUNY | Brooklyn College 39

User and Kernel Threads

3/6/2019 CUNY | Brooklyn College 40

Multithreading Models

• Many-to-One

• One-to-One

• Many-to-Many

3/6/2019 CUNY | Brooklyn College 41

Many-to-One

• Many user-level threads mapped to single kernel
thread

• One thread blocking causes all to block

• Multiple threads may not run in parallel on
muticore system because only one may be in
kernel at a time

• Few systems currently use this model

• Examples:

• Solaris Green Threads

• GNU Portable Threads

3/6/2019 CUNY | Brooklyn College 42

Many-to-One

3/6/2019 CUNY | Brooklyn College 43

One-to-One

• Each user-level thread maps to kernel thread

• Creating a user-level thread creates a kernel
thread

• More concurrency than many-to-one

• Number of threads per process sometimes
restricted due to overhead

• Examples

• Windows

• Linux

3/6/2019 CUNY | Brooklyn College 44

One-to-One

3/6/2019 CUNY | Brooklyn College 45

Many-to-Many Model

• Allows many user level threads to be mapped
to many kernel threads

• Allows the operating system to create a
sufficient number of kernel threads

• Windows with the ThreadFiber package

• Otherwise not very common

3/6/2019 CUNY | Brooklyn College 46

3/6/2019 CUNY | Brooklyn College 47

Two-level Model

• Similar to M:M, except that it allows a user
thread to be bound to kernel thread

3/6/2019 CUNY | Brooklyn College 48

3/6/2019 CUNY | Brooklyn College 49

Questions?

• Concept of thread

• Parallelism and concurrency

• Data and task parallelism

• Amdahl’s Law

• Multithread model

3/6/2019 CUNY | Brooklyn College 50

