
CISC 3320

C06a: Application I/O and
OS I/O Subsystem

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

2/13/2019 1CUNY | Brooklyn College

Acknowledgement

• This slides are a revision of the slides by
the authors of the textbook

2/13/2019 CUNY | Brooklyn College 2

Outline

• Application I/O Interface

• Kernel I/O Subsystem

• Transforming I/O Requests to Hardware
Operations

• Performance

2/13/2019 CUNY | Brooklyn College 3

Application I/O Interface

• I/O system calls encapsulate device
behaviors in generic classes

• Examples: the programs are almost identical
when you

• write to a file, or

• write to a terminal

2/13/2019 CUNY | Brooklyn College 4

Device Driver and I/O
Subsystem
• Device-driver layer hides differences among

I/O controllers from kernel

• New devices talking already-implemented
protocols need no extra work

• Each OS has its own I/O subsystem
structures and device driver frameworks

2/13/2019 CUNY | Brooklyn College 5

Applications

OS Kernel (I/O subsystem)
Hardware

System Call
Interface

A Kernel I/O Structure

2/13/2019 CUNY | Brooklyn College 6

Devices Vary
• Need to understand general characteristics to achieve

device independent

• A couple of dimensions

• Size of transfer: Character-stream or block

• Access order: sequential or random access

• Predictability and responsiveness: Synchronous and
asynchronous

• Shared or dedicated

• Speed of operation, e.g., latency, seek time, transfer rate

• Read-write, read only, or write only

• Questions: what are example devices for each?

2/13/2019 CUNY | Brooklyn College 7

2/13/2019 CUNY | Brooklyn College 8

Questions?

• I/O system call examples

• Different types of devices

• I/O subsystem structure

2/13/2019 CUNY | Brooklyn College 9

Need to Categorizing I/O
Devices
• Subtleties of devices handled by device

drivers

• Applications and Kernel want to communicate
with drivers in very limited but well defined
fashion

2/13/2019 CUNY | Brooklyn College 10

SATA
Controller

USB
Controller

Device Driver Device Driver

OS Kernel

Categorizing I/O Devices

• Broadly I/O devices can be grouped by the OS into

• Block I/O

• Character I/O (Stream)

• Memory-mapped file access

• Network sockets

• Thus, common functionalities can be defined.

• For direct manipulation of I/O device specific
characteristics, usually an escape / back door

• UNIX ioctl() call to send arbitrary bits to a device
control register and data to device data register

2/13/2019 CUNY | Brooklyn College 11

Questions?

• The need to categorize different I/O
devices

2/13/2019 CUNY | Brooklyn College 12

Block Devices

• Block devices include disk drives

• Commands include read, write, seek

• Raw I/O, direct I/O, or file-system access

• Memory-mapped file access possible

• File mapped to virtual memory and clusters
brought via demand paging

• DMA

2/13/2019 CUNY | Brooklyn College 13

Block Devices: Examples

• Naming

• Examples on Linux

• by label, by uuid, by id, and by path

• Running examples

• lsblk –f

• ls /dev/disk/

• Read and write a block a time

• Essential behavior

• read(), write()

• For random-access block devices

• seek()
2/13/2019 CUNY | Brooklyn College 14

Character Devices

• Character devices include keyboards, mice,
serial ports

• Read and write a character a time

• Essential behavior

• get(), put()

• Libraries layered on top allow line editing

2/13/2019 CUNY | Brooklyn College 15

Network Devices

• Varying enough from block and character to
have own interface

• Linux, Unix, Windows and many others include
socket interface

• Separates network protocol from network operation

• Includes select() functionality

• Approaches vary widely (pipes, FIFOs, streams,
queues, mailboxes)

2/13/2019 CUNY | Brooklyn College 16

Clocks and Timers

• Provide current time, elapsed time, timer

• Normal resolution about 1/60 second

• Some systems provide higher-resolution
timers

• Programmable interval timer used for
timings, periodic interrupts

• ioctl() (on UNIX) covers odd aspects of
I/O such as clocks and timers

2/13/2019 CUNY | Brooklyn College 17

Nonblocking and Asynchronous
I/O
• Blocking - process suspended until I/O completed

• Easy to use and understand

• Insufficient for some needs

• Nonblocking - I/O call returns as much as available

• User interface, data copy (buffered I/O)

• Implemented via multi-threading

• Returns quickly with count of bytes read or written

• select() to find if data ready then read() or write() to transfer

• Asynchronous - process runs while I/O executes

• Difficult to use

• I/O subsystem signals process when I/O completed

2/13/2019 CUNY | Brooklyn College 18

Two I/O Methods

2/13/2019 CUNY | Brooklyn College 19

Synchronous Asynchronous

Vectored I/O

• Vectored I/O allows one system call to perform
multiple I/O operations

• For example, Unix readve() accepts a vector
of multiple buffers to read into or write from

• This scatter-gather method better than
multiple individual I/O calls

• Decreases context switching and system call
overhead

• Some versions provide atomicity

• Avoid for example worry about multiple threads changing
data as reads / writes occurring

2/13/2019 CUNY | Brooklyn College 20

Questions

• Different types of I/O devices and
examples

• Related system calls?

2/13/2019 CUNY | Brooklyn College 21

Kernel I/O Subsystem:
Scheduling
• Some I/O request ordering via per-device

queue

• Some operating systems try fairness

• Some implement Quality Of Service (i.e.
IPQOS)

2/13/2019 CUNY | Brooklyn College 22

Kernel I/O Subsystem:
Buffering
• Store data in memory while transferring between

devices

• To cope with device speed mismatch

• To cope with device transfer size mismatch

• To maintain “copy semantics”

• Double buffering – two copies of the data

• Kernel and user

• Varying sizes

• Full / being processed and not-full / being used

• Copy-on-write can be used for efficiency in some cases

2/13/2019 CUNY | Brooklyn College 23

Questions

• I/O subsystem design issues

• Scheduling

• buffering

2/13/2019 CUNY | Brooklyn College 24

Device Status Table

2/13/2019 CUNY | Brooklyn College 25

Questions?

• Data structures in I/O subsystem

2/13/2019 CUNY | Brooklyn College 26

Sun Enterprise 6000 Device-
Transfer Rates

2/13/2019 CUNY | Brooklyn College 27

Discussion Question for
Designers
• How do we deal with (or take advantage of)

the disparity of the vastly different
transfer rates?

• What if a device can only fulfill one request
at a time?

2/13/2019 CUNY | Brooklyn College 28

Caching

• Faster device holding copy of data

• Always just a copy

• Key to performance

• Sometimes combined with buffering

2/13/2019 CUNY | Brooklyn College 29

Spooling

• Spooling - hold output for a device

• If device can serve only one request at a time

• i.e., Printing

2/13/2019 CUNY | Brooklyn College 30

Device reservation

• Provides exclusive access to a device

• System calls for allocation and de-allocation

• Watch out for deadlock (to be discussed in the
class)

2/13/2019 CUNY | Brooklyn College 31

Questions?

• I/O Transfer rate?

• Concurrent access to I/O devices?

2/13/2019 CUNY | Brooklyn College 32

Error Handling

• OS can recover from disk read, device
unavailable, transient write failures

• Retry a read or write, for example

• Some systems more advanced – Solaris FMA, AIX

• Track error frequencies, stop using device with increasing
frequency of retry-able errors

• Most return an error number or code when I/O
request fails

• System error logs hold problem reports

2/13/2019 CUNY | Brooklyn College 33

Questions?

• Dealing with errors?

2/13/2019 CUNY | Brooklyn College 34

Need for I/O Protection

• User process may accidentally or
purposefully attempt to disrupt normal
operation via illegal I/O instructions

2/13/2019 CUNY | Brooklyn College 35

I/O Protection

• All I/O instructions defined to be privileged

• I/O must be performed via system calls

• Memory-mapped and I/O port memory locations
must be protected too

2/13/2019 CUNY | Brooklyn College 36

Use of a System Call to Perform
I/O

2/13/2019 CUNY | Brooklyn College 37

Questions?

• Design for I/O protection

2/13/2019 CUNY | Brooklyn College 38

Kernel Data Structures for I/O

• Kernel keeps state info for I/O components, including
open file tables, network connections, character device
state

• Many, many complex data structures to track buffers,
memory allocation, “dirty” blocks

• Some use object-oriented methods and message passing
to implement I/O

• Windows uses message passing

• Message with I/O information passed from user mode into kernel

• Message modified as it flows through to device driver and back to
process

• Pros / cons?

2/13/2019 CUNY | Brooklyn College 39

UNIX I/O Kernel Structure

2/13/2019 CUNY | Brooklyn College 40

Questions?

• Kernel data structures for I/O

2/13/2019 CUNY | Brooklyn College 41

Power Management

• Not strictly domain of I/O, but much is I/O
related

• Computers and devices use electricity, generate
heat, frequently require cooling

• OSes can help manage and improve use

• Cloud computing environments move virtual machines
between servers

• Can end up evacuating whole systems and shutting them
down

• Mobile computing has power management as
first class OS aspect

2/13/2019 CUNY | Brooklyn College 42

Power Management: Examples

• For example, Android implements

• Component-level power management

• Understands relationship between components

• Build device tree representing physical device topology

• System bus -> I/O subsystem -> {flash, USB storage}

• Device driver tracks state of device, whether in use

• Unused component – turn it off

• All devices in tree branch unused – turn off branch

• Wake locks – like other locks but prevent sleep of device when lock is held

• Power collapse – put a device into very deep sleep

• Marginal power use

• Only awake enough to respond to external stimuli (button press, incoming call)

2/13/2019 CUNY | Brooklyn College 43

Questions?

• I/O and power management?

2/13/2019 CUNY | Brooklyn College 44

Life Cycle of An I/O Request

• Consider reading a file from disk for a
process:

• Determine device holding file

• Translate name to device representation

• Physically read data from disk into buffer

• Make data available to requesting process

• Return control to process

2/13/2019 CUNY | Brooklyn College 45

2/13/2019 CUNY | Brooklyn College 46

Questions?

• I/O request operation from beginning to end
(life cycle)?

2/13/2019 CUNY | Brooklyn College 47

I/O and Performance

• I/O a major factor in system performance:

• Demands CPU to execute device driver, kernel
I/O code

• Context switches due to interrupts

• Data copying

• Network traffic especially stressful

2/13/2019 CUNY | Brooklyn College 48

Intercomputer
Communications

2/13/2019 CUNY | Brooklyn College 49

Improving Performance

• Reduce number of context switches

• Reduce data copying

• Reduce interrupts by using large transfers, smart
controllers, polling

• Use DMA

• Use smarter hardware devices

• Balance CPU, memory, bus, and I/O performance for
highest throughput

• Move user-mode processes / daemons to kernel
threads

2/13/2019 CUNY | Brooklyn College 50

Device-Functionality
Progression

2/13/2019 CUNY | Brooklyn College 51

Design Consideration: Access
Right
• A design consideration

• What kind of access right should we give to
device drivers?

• Unrestricted

• Kernel mode

• Relatively easier to design, can affect the others

• Restricted

• User mode

• More difficult to design, isolated from the others

2/13/2019 CUNY | Brooklyn College 52

Design Consideration: Loading
Device Drivers
• Relink the kernel with the new deriver

• Require reboot

• Add to the kernel an entry indicating a new
driver is needed

• Load the driver during reboot

• Install and run the device driver on the fly

• Hot-pluggable

2/13/2019 CUNY | Brooklyn College 53

Questions?

• System performance and I/O

• Device-function progression

• Access right

• Loading device drivers

2/13/2019 CUNY | Brooklyn College 54

