CISC 3320
CObb: I/0 Hardware and

Schemes

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Acknowledgement

» This slides are a revision of the slides by
the authors of the textbook

Outline

* I/0 Device/Hardware
 Role of Device Driver

» Accessing I/0 Devices
* I/0 Schemes

Overview of I/0 Management

« I/0 management is a major component of operating
system design and operation

* Important aspect of computer operation
« I/0 devices vary greatly
* Various methods to control them

* Performance management
* New types of devices frequent
« Ports, busses, device controllers connect to various devices

« Device drivers encapsulate device details

* Present uniform device-access interface to I/O subsystem

I/0 Hardware

A few general categories
« Storage devices
« Examples: Disks, tapes, solid state drives
* Transmission devices
« Examples: network adapters, modems
« Human-interface devices
« Examples: display screens, keyboard, mouse, tfouch screen
* Specialized devices

« Examples: I/0 devices in control cars, robots,
aircrafts, spacecrafts

Common Concepts

» Signals from I/0 devices interface with
computer via:

* Port
* Bus

e Device controller

Port

* Port: connection point for device

* Devices communicate with a computer via this
connection point

* (Physical) port
« Examples: USB port, serial port, parallel port

* (Logical) port

Bus

* Daisy chain or shared direct access

+ A common set of wires with a protocol that
specifies commands that can be transmitted

« Examples:
 PCI bus common in PCs and servers, PCT Express (PCIe)

« Expansion bus connects relatively slow devices

Device Controller

e Devices

« Example: hard disk drives have motors, magnetic
headers, and disks

* Controller, also called host adapter

* A collection of electronics that operate a port, a bus,
or a device (some contain small embedded computer)

* Accept and act on commands from the OS

* Present a simpler interface to the OS

« Examples: SATA controller

Variety of Controllers

« Sometimes integrated

» Sometimes separate circuit board (host
adapter)

» Contains processor, microcode, private
memory, bus controller, etc

« Some talk to per-device controller with bus
controller, microcode, memory, etc

A Typical PC Bus Structure

2/11/2019

2000

monitor processor
cache
graphics bridge/memory | memory SCSI controller
controller controller
| PCI bus

IDE disk controller

® @
@ ©

expansion bus

interface keyboard
0 expansion bus
parallel serial
port port

CUNY | Brooklyn College: CISC 3320 OS

11

Questions?

* Variety of devices

 Port, bus, and device controller

Needing Device Driver

» Each type of controller is different

* A piece of software called device driver
communicates to the controller, and the OS

« Adhere to some standard when communicating to
the OS

Device, Driver, and OS

* Reduce complexity, increase uniformity and
reliability

OS Kernel

Device Driver Device Driver

SATA
Controller

USB Controller

2/11/2019 CUNY | Brooklyn College: CISC 3320 OS 14

Questions?

* Role and benefit of having device drivers?

I/0 Instructions

« T/0 instructions control devices via device
controllers

* Device controller usually have registers
where device driver places commands,
addresses, and data to write, or read data
from registers after command execution

Controller Registers

» Typically have 4 registers or more
 Typically 1-4 bytes
 Data-in register
* Read by the host
 Data-out register
« Wpritten by the host

« Status register

* A number of bits indicating the status of the device (e.g., busy,
error)

« Control register

« A number of bits indicating the mode of the device

Controller Data Buffer

* May have a data buffer, e.g., FIFO buffer

» Examples: video adapter (video memory)

VM VirtualBox: Allocating

De

vice Buffer

o

{3 Debian32bit - Settings

@ General Display
IE Spstern SCreen | Remate Display Yideo Capture //\
{
Display Yideo Memary: 16 MB
0 ME 125 —
Storage
Monitor Counk: 1
Di Audia 1 5
Scale Fackar: I_J 0% =
@‘ Metwork
100%% 200
@ Serial Ports Acceleration: Enable 30 Acceleration
Enable 20 Wideo Acceleration
ﬁ UsE
|j Shared Folders
El User Interface
(04] [Zancel

2/11/2019

CUNY | Brooklyn College: CISC 3320 OS

19

Device Addresses

* Devices have addresses (logical port), used
by
 Direct I/0 instructions
* Memory-mapped I/0

* Device data and command registers mapped to
processor address space

» Especially for large address spaces (graphics)

Device Address (I/0 Port
Space)

 Each register is assighed an address, sometimes
called an I/0 port number

 Typically, a 8-bit or 16-bit integer
 All T/O port numbers form the I/0 port address
space

* A CPU has I/0 instructions

« Example instruction (in an assembly language):
« IN REG, PORT
« OUT PORT, REG

Device I/0 Port Locations on

PCs (partial)

2/11/2019

|/O address range (hexadecimal)

device

000-00F DMA controller
020-021 interrupt controller
040-043 timer
200-20F game controller
2F8-2FF serial port (secondary)
320-32F hard-disk controller
378-37F parallel port
3D0-3DF graphics controller
3F0-3F7 diskette-drive controller
3F8-3FF

serial port (primary)

CUNY | Brooklyn College:

CISC 3320 OS

22

Access Device Controller

* CPU read and write to the device controller
registers and data buffer

* (Logical) I/0 ports
« Memory mapped I/0

I/0 Instruction: Example

« Example from

* http://www.tldp.org/HOWTO/text/TIO-Port-
Programming

e Source

* https://qgithub.com/CISC33205SP19/SampleProgr
ams/tree/master/CO5bIO

2/11/2019 CUNY | Brooklyn College: CISC 3320 OS 24

http://www.tldp.org/HOWTO/text/IO-Port-Programming
https://github.com/CISC3320SP19/SamplePrograms/tree/master/C05bIO

Memory Mapped I/0

* Map all the control registers into the
memory address space

* A register is assigned to a unique memory
address to which no memory is assigned

* Accessing these registers as if they were main
memory

* Hybrid scheme

* Data buffers are mapped to memory address
* Control registers have dedicated I/O ports

Accessing Device Controllers

Two address

OxFFFF...

I/0 Ports

Memory

I/O ports

/

(a)

One address space

Two address spaces

(b) (c)

Memory-Mapped Hybrid

* Access controller registers [Figure 5-2 in

Tanenbaum & Bos, 2014]

Strength and Weakness

» Strength of memory mapped I/0
* Easier to program
* Easier to protect

* Faster to access

» Weakness (two addresses logically identical,
but physically different)

* More complex to design cache

* More complex to design bus

Questions?

 Access devices controller registers
« I/0 ports

« Memory-mapped I/0
 Hybrid

I/0O Schemes

* Busy waiting (polling)
* while (busy) wait; do I/0;
* Interrupted I/0
» do something else; when (interrupted) do I/0O:;

* Direct memory access (DMA)

* initialize DMA; do something else; notified I/0
completion or failure when interrupted;

Busy-Waiting (or Polling)

Tllustrate it with writing a byte

* Host
do
read the busy-bit in the device status register
while (busy)
set the write-bit in the control register
write a byte intfo the data-out register
set the command-ready bit in the control register

ook wn =

« Device Controller
do
read the command-ready bit
while (not set)
set the busy bit
read the byte in the data-out register
write the byte to the device
if (success) clear the command-ready bit and the busy bit
else set the error bit

©NO U A WN R

2/11/2019 CUNY | Brooklyn College: CISC 3320 OS 30

Busy Waiting Occupies CPU

* Host:

1. do

2. [1]read the busy-bit in the device status register
3. [31 while ([2] busy)

4

. STéEs 1 - 3 are a busy-wait cycle to wait for
I/0 from device via polling the device controller

* Polling can happen in 3 instruction cycles

* Read status, logical-and to extract status bit, branch
if not zero

Busy-Waiting: Discussion

* Host:

1. do

2. read the busy-bit in the device status register
3. while (busy)

4

. S’réﬁs 1 - 3 are a busy-wait cycle to wait for
I/0 from device

* Reasonable if device is fast (e.g., 1 or 2 cycles).
* But inefficient if device slow (e.g., many cycles).
« CPU switches to other tasks?

* But if miss a cycle data overwritten / lost.

Interrupt-Driven I/0

* Host:

1. do

2. [1]lread the busy-bit in the device status register
3. [31while ([2] busy)

4

. Pollihg can happen in 3 instruction cycles

* Read status, logical-and to extract status bit, branch if
nhot zero

« How to be more efficient?

 Design with interrupts
 Design I/0 device to trigger CPU Interrupt-request line, and

* Program accordingly

Interrupt-Driven I/0 Cycle

CPU

2/11/2019

Initiates 1/0 via the
device driver Device Controller

Execute instructions
(for other tasks) and
check interrupts after Initiates /O
each instruction

Does I/0 (e.g., spin
Saves CPU state disk)

Runs interrupt handler
to process I/0O

|/O ready or error; raise
interrupt-request line

Restores CPU state

Rhesume processing o

Al NelNals S K

CUNY | Brooklyn College: CISC 3320 OS

34

Processing I/0: What if Many
Bytes to Read?

 CPU B e Device Controller

device driver

Initiates 1/0
Execute instructions

{{e]g o'Fher tasks) and Does I/O (e.g., spin
check interrupts after disk)
each instruction

Saves CPU state

|/O ready or error; raise
interrupt-request line

Runs interrupt handler
to process |/O

Restores CPU state for (|nt |=O, |<NUM_BYTES, i++) {
i el // read byte i

Rhesume processing o

2/11/2019 CUNY | Brooklyn College: CISC 3320 OS 35

Direct Memory Access

* Used to avoid programmed I/0O (one byte at
a time) for large data movement

* Requires DMA controller

* Bypasses CPU to transfer data directly
between I/0O device and memory

« Version that is aware of virtual addresses
can be even more efficient

* Direct Virtual Memory Access (DVMA)

Six Step Process to Perform
DMA Transfer

« OS writes DMA command block into memory

« Source and destination addresses

Read or write mode

Count of bytes

Writes location of command block to DMA controller

Bus mastering of DMA controller
* grabs bus from CPU
* Cycle stealing from CPU but still much more efficient

When done, interrupts to signal completion

1. device driver is told
to transfer disk data CPU
to buffer at address X
5. DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer T
and decreasing C at address X
untilC =0 T
us
6. when C = 0, DMA . = X
interrupts CPU to signal égﬁrrrou”%tr % CPU memory bus S bufter
transfer completion
() PCl bus
3. disk controller initiates
IDE disk DMA transfer
controller | 4. disk controller sends

each byte to DMA

@ @ controller
s s

2/11/2019 CUNY | Brooklyn College: CISC 3320 OS

38

Questions?

* I/0 instructions
* I/O schemes
* Busy-waiting (polling)
* Interrupt-driven (interrupted) I/0

* Direct memory access

