CISC 3320
C05a: Interrupts

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

2/11/2019
Acknowledgement

• This slides are a revision of the slides by the authors of the textbook
Outline

• Concept of interrupts
• Interrupt service routing, interrupt vector, and interrupt vector table
• Interrupt handling
• Interrupt design consideration
OS and Interrupts

• An operating system is interrupt driven
 • Timers
 • I/O
 • ...

2/11/2019 CUNY | Brooklyn College: CISC 3320 OS
How an Interrupt Happens?

- [Figure 5-5 in Tanenbaum & Bos, 2014]
Example: CPU & Interrupt Controller
Interrupts

• Interrupt transfers control to the interrupt service routine generally

• Two sources of interrupts

 • External (hardware-generated) interrupts: interrupts are generally caused by hardware

 • Software generated interrupts: a trap or exception is a software-generated interrupt caused either by an error or a user request

• Interrupt vector (interrupt descriptor by Intel)

 • Interrupt service routine: interrupt handler, a program processes the interrupt

 • Interrupt vector table: consists of interrupt vectors

 • Interrupt vector: the address of an interrupt handler

• Interrupt architecture must save the address of the interrupted instruction
Interrupt Vectors

- Address to interrupt routines
 - Some PC event/interrupt-vector numbering

<table>
<thead>
<tr>
<th>Vector Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Divide Error</td>
</tr>
<tr>
<td>1</td>
<td>Debug Exception</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Invalid Opcode</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>32-255</td>
<td>Maskable Interrupts (device generated)</td>
</tr>
</tbody>
</table>
Handling Interrupt

- CPU senses its interrupt-request line after each instruction
- When it is “lit”, CPU saves the current state
 - Example: push registers PSW and PC to the stack
- CPU jumps to the interrupt-handler routine at a fixed address in the memory
- Interrupt-handler routine completes its task and restore the CPU state
 - Pop the registers from the stack
Design Consideration:
Interrupts

• Maskable and nonmaskable interrupts
• Interrupt priorities and interrupt chaining
• Exceptions and software interrupts (traps)
• Precise and imprecise interrupts
Interrupt Timeline: I/O Interrupts

<table>
<thead>
<tr>
<th>CPU</th>
<th>I/O device</th>
</tr>
</thead>
<tbody>
<tr>
<td>user process</td>
<td>idle</td>
</tr>
<tr>
<td>executing</td>
<td>transferring</td>
</tr>
</tbody>
</table>

- I/O request
- transfer done
- I/O request
- transfer done
Exceptions and Interrupts

• Interrupt mechanism also used for exceptions
 • Terminate process, crash system due to hardware error

• Page fault executes when memory access error
 • System call executes via trap to trigger kernel to execute request

• Multi-CPU systems can process interrupts concurrently
 • If operating system designed to handle it

• Used for time-sensitive processing, frequent, must be fast
Questions?

• Reviewed the concept of interrupts