
CISC 3320 MW3

C03c: Linkers and Loaders
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

2/4/2019 1CUNY | Brooklyn College: CISC 3320 OS

Outline

• Linkers and linking

• Loaders and loading

• Object and executable files

2/4/2019 CUNY | Brooklyn College: CISC 3320 OS 2

Authoring and Running a
Program
• A programmer writes a program in a programming

language (the source code)

• The program resides on disk as a binary executable
file translated from the source code of the program

• e.g., a.out or prog.exe

• To run the program on a CPU

• the program must be brought into memory, and

• create a process for it

• A multi-step process

2/4/2019 CUNY | Brooklyn College: CISC 3320 OS 3

2/4/2019 CUNY | Brooklyn College: CISC 3320 OS 4

Compilation

• Source files are
compiled into object
files

• The object files are
designed to be loaded
into any physical
memory location, a
format known as an
relocatable object file.

2/4/2019 CUNY | Brooklyn College: CISC 3320 OS 5

Relocatable Object File

• Object code: formatted machine code, but
typically non-executable

• Many formats

• The Executable and Linkable Format (ELF)

• The Common Object File Format (COFF)

2/4/2019 CUNY | Brooklyn College: CISC 3320 OS 6

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
https://docs.microsoft.com/en-us/windows/desktop/debug/pe-format

Examining an Object File

• In Linux/UNIX,

$ file main.o

main.o: ELF 64-bit LSB relocatable, x86-64, version 1
(SYSV), not stripped

$ nm main.o

• Also use objdump, readelf, elfutils, hexedit

• You may need

apt-get install hexedit

apt-get install elfutils

2/4/2019 CUNY | Brooklyn College: CISC 3320 OS 7

https://access.redhat.com/documentation/en-US/Red_Hat_Developer_Toolset/1/html/User_Guide/chap-elfutils.html

Linking

• During the linking phase, other object files
or libraries may be included as well

• Example:

$ g++ -o main -lm main.o sumsine.o

• A program consists of one or more object files.

• Linker combines relocatable object files into a
single binary executable file.

2/4/2019 CUNY | Brooklyn College: CISC 3320 OS 8

Linking: Example

2/4/2019 CUNY | Brooklyn College: CISC 3320 OS 9

Loader

• A loader is used to load the binary executable file
into memory, where it is eligible to run on a CPU
core.

• An activity associated with linking and loading is
relocation

• It assigns final addresses to the program parts and
adjusts code and data in the program to match
those addresses

• So that, for example, the code can call library
functions and access its variables as it executes.

2/4/2019 CUNY | Brooklyn College: CISC 3320 OS 10

Loading: Example

2/4/2019 CUNY | Brooklyn College: CISC 3320 OS 11

Running Loader to Load a
Program
• The loader may be invoked differently in different operating

systems or operating systems shells

• Examples:

• Enter the name of the execute file on the command line and hit the
ENTER key.

• Double-clicking on the icon associated with the executable file
invokes the loader using a similar mechanism

• In Linux/UNIX,

• The shell first creates a new process to run the program using the
fork() system call.

• The shell then invokes the loader with the exec() system call, passing
exec() the name of the executable file.

• The loader then loads the specified program into memory using the
address space of the newly created process.

2/4/2019 CUNY | Brooklyn College: CISC 3320 OS 12

Library and Dynamically Link
Library
• Library: a collection object code/files

combined in a single formatted file

• Static library

• Object code in the library are linked into the
executable file during the linking process,
becomes a part of the executable, and loaded
into memory from the executable

• Dynamic link library

2/4/2019 CUNY | Brooklyn College: CISC 3320 OS 13

Dynamic Link Library

• Object code in the library are linked during the loading process, and
the object code is not a part of the executable.

• Examples

• Windows: DLLs (dynamically linked libraries)

• Linux/UNIX: SOs (dynamically linked shared object libraries)

• Benefit: the library is conditionally linked and is loaded as required
during program run time, which avoids linking and loading libraries
that may end up not being used into an executable file.

• For example, the math library is a Linux dynamically linked shared object
library, as such is not linked into the executable file main.

• In this case, the linker inserts relocation information that allows it to be
dynamically linked and loaded as the program is loaded.

• It is possible for multiple processes to share dynamically linked libraries,
resulting in a significant savings in memory use.

2/4/2019 CUNY | Brooklyn College: CISC 3320 OS 14

Object File and Executable File

• Executable files, like object files, typically have standard
formats

• Executable files and object files include

• the compiled machine code, and

• a symbol table containing metadata about functions and variables
that are referenced in the program.

• Example formats

• Linux/UNIX: the ELF format (for Executable and Linkable Format).
There are separate ELF formats for relocatable and executable
files.

• The ELF file for executable files has the program's entry point, the address
of the first instruction to be executed when the program runs.

• Windows: the Portable Executable (PE) format

• Mac OS X: the Mach-O format.
2/4/2019 CUNY | Brooklyn College: CISC 3320 OS 15

Questions?

2/4/2019 CUNY | Brooklyn College: CISC 3320 OS 16

Applications are System
Specific
• Why?

• Each operating system provides a unique set of
system calls. System calls are part of the set of
services provided by operating systems for use
by applications.

• But, we do run some applications cross
platforms

• Chrome, Firefox, etc

2/4/2019 CUNY | Brooklyn College: CISC 3320 OS 17

Portable Applications

• How?

• Via interpreted program languages

• Via a virtual machine

• Via a standard language or API and
compilation

2/4/2019 CUNY | Brooklyn College: CISC 3320 OS 18

Interpreted Programming
Languages
• Via interpreted programming languages

• The application can be written in an interpreted language
(such as Python or Ruby) that has an interpreter available
for multiple operating systems.

• The interpreter reads each line of the source program,
executes equivalent instructions on the native instruction
set, and calls native operating system calls.

• Performance suffers relative to that for native
applications, and the interpreter provides only a subset of
each operating system's features, possibly limiting the
feature sets of the associated applications.

2/4/2019 CUNY | Brooklyn College: CISC 3320 OS 19

Virtual Machine

• The application can be written in a language that includes a
virtual machine containing the running application.

• The virtual machine is part of the language's full Run-Time
Environment (RTE).

• Example: Java and JRE

• Java has an RTE that includes a loader, byte-code verifier, and other
components that load the Java application into the Java virtual
machine.

• This RTE has been ported, or developed, for many operating systems,
from mainframes to smartphones, and in theory any Java app can run
within the RTE wherever it is available.

• Systems of this kind have disadvantages similar to those of
interpreters, discussed above.

2/4/2019 CUNY | Brooklyn College: CISC 3320 OS 20

Standard API and Compilation

• The application developer can use a standard language or
API in which the compiler generates binaries in a
machine- and operating-system-specific language.

• The application must be ported to each operating system
on which it will run.

• This porting can be quite time consuming and must be
done for each new version of the application, with
subsequent testing and debugging.

• Example of a Standard API: the POSIX API and its set
of standards for maintaining source-code compatibility
between different variants of UNIX-like operating
systems.

2/4/2019 CUNY | Brooklyn College: CISC 3320 OS 21

Questions?

• Applications are often system specific

• Approaches to write portable applications

2/4/2019 CUNY | Brooklyn College: CISC 3320 OS 22

