CISC 3320 MW3
CO2a: OS Functions and

Services
Hui Chen

Department of Computer & Information Science
CUNY Brooklyn College

Acknowledgement

» This slides are a revision of the slides by
the authors of the textbook

Outline

* Operating System Services

» User Operating System Interface
 System Calls

» Types of System Calls

A Computer System: Four
Components

1/30/2019

user user user user
1 2 3 n
4
¥
compiler assembler text editor database
system

system and application programs

operating system

computer hardware

CUNY | Brooklyn College: CISC 3320 OS

OS Services and Functions

 Operating systems provide an environment for
execution of programs and services to programs
and users

* One set of operating-system services provides
functions that are helpful to the user

* Another set of OS functions exists for ensuring
the efficient operation of the system itself via
resource sharing

User Services

» User interface

* Program execution

* I/0O operation

* File-system manipulation
» Communication

* Error detection

User Interface

 Almost all operating systems have a user
interface (UI)
« Command-Line Interface (CLI)
e Graphical User Interface (GUT)
« Batch Interface

 Touchscreen interface

Program Execution

* The system must be able
* to load a program into memory,
* to run that program, and

- end execution, either normally or abnormally
(indicating error)

I/0 Operation

* A running program may require I/0, which
may involve a file or an I/0 device

File-system Manipulation

* Programs need
* Yo read and write files and directories,
* to create and delete them,
* to search them,
* to list file Information, and

* To manage permissions

Communications

* Processes may exchange information
* on the same computer or

« between computers over a network

« Communications may be
* via shared memory or

 through message passing (packets moved by the OS)

Error Detection

+ OS needs to be constantly aware of possible errors

* May occur in the CPU and memory hardware, in I/0
devices, in user program

* For each type of error, OS should take the appropriate
action to ensure correct and consistent computing

 Debugging facilities can greatly enhance the user's and
programmer’s abilities to efficiently use the system

Questions?

System Functions

* Resource allocation
* Accounting

* Protection and security

Resource Allocation

* When multiple users or multiple jobs
running concurrently, resources must be
allocated to each of them

* Many types of resources

« CPU cycles
main memory

* file storage
« I/0 devices.

Accounting

* To keep track of which users use how much
and what kinds of computer resources

Protection and Security

* The owners of information stored in a
multiuser or networked computer system
may want to control use of that information,
concurrent processes should not interfere
with each other

* Protection involves ensuring that all access to
system resources is controlled

* Security of the system from outsiders requires
user authentication, extends to defending
external I/0 devices from invalid access
attempts

A View of OS Services and
Functions

user and other system programs

GUI

batch

command line

user interfaces

system calls

program
execution

I/O
operations

file
systems

communication

resource
allocation

accounting

error
detection

services

protection

and
security

operating system

hardware

1/30/2019

CUNY | Brooklyn College: CISC 3320 OS

18

Questions?

» Overview of services and functions for
system itself

User Operating System
Interface

« Command-Line Interface (CLI)
* Graphical User Interface (GUT)

« Touchscreen Interface

CLI

« Command Line Interface (CLI) or Command Interpreter

* CLI or command interpreter allows direct command entry

« Sometimes implemented in kernel, sometimes by systems
program

« Sometimes multiple flavors implemented
* Called shells
* Primarily fetches a command from user and executes it

« Sometimes commands built-in, sometimes just names of
programs

* If the latter, adding new features doesn't require shell
modification

Example: Bourne Shell Comman
Interpreter

5O & 3
- o
5 | : N
MNew Info Close Execute Bookmarks
| | Default | Default
PBG-Mac-Pro:~ pbg$ w
15:24 up 56 mins, 2 users, load averages: 1.51 1.53 1.65

USER TTY FROM LOGINE IDLE WHAT
pbg console - 14:34 5@ -
pbg =008 - 15:85 - W
PBG-Mac-Pro:~ pbg$ ilostat 5
disk@ diskl diskld cpu load average
KB/t tps MB/s KB/t tps MB/s KB/t tps MB/s wus sy id 1m Sm 15m
33.75 343 11.3@ 64.31 14 ©.88 39,67 @ ©.82 11 5 84 1.51 1.53 1.65
5.27 320 1.65 9.00 @ 0.00 .00 @ ©0.00 4 294 1.39 1.51 1.65
4,28 329 1.37 9.80 @ 0.00 .08 @ ©0.00 5 392 1.44 1.51 1.65
AC
PBG-Mac-Pro:~ pbg$ ls
Applications Music WebEx
Applications (Parallels) Pando Packages config.log
Desktop Pictures getsmartdata. txt
Documents Public imp
Downloads Sites log
Dropbox Thumbs . db panda-dist
Library Virtual Machines prob.txt
Movies Volumes scripts
PBG-Mac-Pro:~ pbg$ pwd
FUsers/pbg

PBG-Mac-Pro:~ pbg$ ping 192.168.1.1

PING 192.168.1.1 (192.168.1.1): 56 data bytes

64 bytes from 192.168.1.1: icmp_seq=0 ttl=64 time=2.257 ms
64 bytes from 192.168.1.1: icmp_seq=1 ttl=64 time=1.262 ms
AL

--- 192.168.1.1 ping statistics ---

2 packets transmitted, 2 packets received, @.0% packet loss
round-trip minfavg/max/stddev = 1.262/1.768/2.257/0.498 ms
PBG-Mac-Pro:~ pba$ []

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS

GUI

 User-"friendly” desktop metaphor interface
* Usually mouse, keyboard, and monitor
« Icons represent files, programs, actions, etc

« Various mouse buttons over objects in the interface cause
various actions (provide information, options, execute function,
open directory (known as a folder)

e Tnvented at Xerox PARC
* Many systems now include both CLT and GUI interfaces
* Microsoft Windows is GUTI with CLI “"command” shell

« Apple Mac OS X is "Aqua” GUT interface with UNIX kernel
underneath and shells available

 Unix and Linux have CLI with optional GUT interfaces (CDE, KDE,
GNOME)

The Mac OS X GUI

@ Grab File Edit Window Help i

*« D G A 4 1506EDTMon2Jul 2 4 @

e Al = .
aGZH)EED CEE)IEEI 0 2 Qs @ B Q R secon y » e

i s Favwiites» Dacumentss [usics Moviess Picturess Datktons Apolicationss ZFEGe ZPBCGE+ (Disk+
© 2007-06s10uaride || Desttop @ Comuvisr (@ to-dir | : 4 s
205G) irw) bosk) usk-die 3 st) s o
Knd Dete Modiied Size Apalication
FOF €:24/07, 1:037\ 106 LKE Skm
G £118/07, 5:520M TTRE lakscane
Fortab € Netwsik Crazhizs Imaqe Today. 1OGM 2B Fredme
G Tedy. LOGPM 12368 Inkscape
T it Tody, 7230M BRI e

8 Netwark

2 Freedom Steipe

2 Watintash KD

2 Unstled

i Uncitles 2

778G

 2P8GE

@ ibisk

* Pater Rasr Galvin's iPod

h3-2.0 pag

Oo00C»

few e e

h3-2.0 50

RO

T

 ph o Name: 7-2.73
i oko [BER
A Apatications
1 Dotuments

10/
§B Games CALYENT: PBCOBLACCS . N
| Uil ties 12PEG
| tma Size: 381 KU 1951236 bytes)
data; 901,236 byles
1 Deskrop Fvsical. 81 KE (402,144
‘w Favorites aytes)
& Music . Modifed: Tosay, 2:23PM
8 Vovies Tl sty » clecor Pk~
Peturas * hg-2.08 v fig-20a

| Sites. ho-die
o Public as8-dir
| Preferences 00k
¥ by mp

o o PEG

projects

consult .

3a 1itf
TIFF Cocu ment

3 usez s

| e || Sl suems 10F € Iters selected - 734.3 G avel

8 _iAddress Book
= e
| &~ Qanzle
I Nema
|| A2nle Computer In . Apple Computer Inc. . Dictie

| [llDireczories & Aaple Computer In
jl’xus:lmpon‘

Dictignary and Thesaurus

Q operating system h)

nnn PCalc S
|

i [E—— || peg Rad

Opeereatsing sysetem =2
e

l the woftware (0 supports a computer s besic funetions.

| - auch as s el g tasks, exee ting applic s dons, ar-|

N J H A0 1802 WY-APPLE | cantralling peripherals

‘ Gllies 800-275.2373

§
5
g

)

<
*
B

3300
CEEEEE

R e
[£]
e}

N home paoe httpafivmay. appe.co™

|

l work tinlicite _oop
C.pert no CA 95014
| United Siztes s .

=z
g

-

&

I
19(a
L

LI

z
s

) £an 2 found =—r

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS

Touchscreen Interfaces

« Touchscreen devices
require new interfaces

« Mouse not possible or not
desired

 Actions and selection
based on gestures

« Virtual keyboard for text
entry

* Voice commands.

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS

25

Questions?

» Overview of different types of user
interface

System Calls

* Programming interface to the services
provided by the OS

* Typically written in a high-level language (C
or C++)

Examples of System Calls

 System call sequence to copy the contents
of one file o another file

source file

>

1/30/2019

destination file

4 Example System Call Sequence

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
if file doesn't exist, abort

Create output file
if file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

Terminate normally

A

~

p

CUNY | Brooklyn College: CISC 3320 OS

29

Standard APT vs. System Calls

* Mostly accessed by programs via a high-level
Application Programming Interface (API) rather
than direct system call use

 Three most common APIs

« Win32 API for Windows

« POSIX API for POSIX-based systems (including
virtually all versions of UNIX, Linux, and Mac OS X),

and
« Java APT for the Java virtual machine (JVM)

Example of Standard API

* The read API in UNIX/Linux (POSIX read)
* The ReadFile API in Windows

1/30/2019

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read() function that is
available in UNIX and Linux systems. The API for this function is obtained
from the man page by invoking the command

man read

on the command line. A description of this API appears below:

#include <unistd.h>

ssize t read(int fd, wvoild *buf, size t count)
I | | | | |
return function paramaters
value name

A program that uses the read () function must include the unistd.h header
file, as this file defines the ssize t and size t data types (among other
things). The parameters passed to read () are as follows:

¢ int fd—the file descriptor to be read

® void *buf—a buffer where the data will be read into

¢ size-t count—the maximum number of bytes to be read into the

buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

CUNY | Brooklyn College: CISC 3320 OS 32

http://pubs.opengroup.org/onlinepubs/9699919799/functions/read.html

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS

https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-readfile

Questions?

» System calls
 System call vs Library API

System Call Implementation

* Typically, a number associated with each system call

« System-call interface maintains a table indexed according to these
numbers

« The system call interface invokes the intended system call in
OS kernel and returns status of the system call and any
return values

* The caller need know nothing about how the system call is
implemented

« Just needs to obey APT and understand what OS will do as a result
call

* Most details of OS interface hidden from programmer by APT

* Managed by run-time support library (set of functions built into libraries
included with compiler)

APT vs. System Call vs. OS

user application

open ()
user
mode
system call interface
kernel
mode A
| open ()
: Implementation
i » of open ()
. system call
return

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 36

System Call Parameter Passing

« Often, more information is required than simply identity of desired
system call

« Exact type and amount of information vary according to OS and call

* Three general methods used to pass parameters to the OS

« Viaregisters: Simplest: pass the parameters in registers
« Insome cases, may be more parameters than registers

 Via table: Parameters stored in a block, or table, in memory, and address of
block passed as a parameter in a register

This approach taken by Linux and Solaris

* Via stack: Parameters placed, or pushed, onto the stack by the program and
popped of f the stack by the operating system

 Block and stack methods do not limit the number or length of
parameters being passed

Parameter Passing via Table

— X

X: parameters
for call

load address X

register

system call 13 —

/

use parameters
from table X

user program

1/30/2019

-

operating system

CUNY | Brooklyn College: CISC 3320 OS

code for
system
call 13

38

Questions?

* Conceptual idea of system call
implementation

* How to pass parameters to system calls?

Types of System Calls

* Process control

* File management

* Device management

* Information maintenance
« Communication

* Protection

Process Control

* create process, terminate process

* end, abort

 load, execute

* get process attributes, set process attributes

* wait for time

* wait event, signal event

* allocate and free memory

* Dump memory if error

 Debugger for determining bugs, single step execution

* Locks for managing access to shared data between processes

File Management

 create file, delete file
* open, close file
* read, write, reposition

» get and set file attributes

Device Management

* request device, release device
* read, write, reposition
» get device attributes, set device attributes

* logically attach or detach devices

Information Maintenance

* get time or date, set time or date
» get system data, set system data

» get and set process, file, or device
attributes

Communication

 create, delete communication connection

* send, receive messages if message passing
model to host name or process name

 From client to server

« Shared-memory model create and gain access to
memory regions

e transfer status information
« attach and detach remote devices

Protection

« Control access to resources
* Get and set permissions

» Allow and deny user access

Examples of Windows and UNIX
System Calls

* Loosely speaking, the examples show the
APIs. The APIs wrap around system calls.

1/30/2019

Process
Control

File
Manipulation

Device
Manipulation

Information
Maintenance

Communication

Protection

Windows

CreateProcess()
ExitProcess()
WaitForSingleObject ()

CreateFile()
ReadFile()
WriteFile()
CloseHandle ()

SetConsoleMode ()
ReadConsole()
WriteConsole()

GetCurrentProcessID()
SetTimer ()
Sleep()

CreatePipe()
CreateFileMapping()
MapViewOfFile()

SetFileSecurity()

InitlializeSecurityDescriptor()
SetSecurityDescriptorGroup()

CUNY | Brooklyn College: CISC 3320 OS

Unix

fork()
exit()
wait()

open()
read()
write()
close()

ioctl()
read()

write()

getpid()
alarm()
sleep()

pipe ()
shmget ()
mmap ()

chmod ()
umask ()
chown ()

48

Questions?

* Overview of different types of system calls.

Standard C Library

* The standard C library provides a portion of
the system-call interface for many versions

of UNIX and Linux

Example of the standard C
Library APT

» C program invoking printf() library call,
which calls write() system call

user
mode

#include <stdio.h=
int main {)

{

printf ("Greetings");

return 0;
1

kernel
mode

1/30/2019

standard C library

write ()

write [)
system call

CUNY | Brooklyn College: CISC 3320 OS

Standard C Library

* The standard C library provides a portion of
the system-call interface for many versions

of UNIX and Linux

Example of the standard C
Library APT

» C program invoking printf() library call,
which calls write() system call

user
mode

#include <stdio.h=
int main {)

{

printf ("Greetings");

return 0;
1

kernel
mode

1/30/2019

standard C library

write ()

write [)
system call

CUNY | Brooklyn College: CISC 3320 OS

Questions?

» Standard C library and system calls

