
CISC 3320 MW3

C02a: OS Functions and
Services

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

1/30/2019 1CUNY | Brooklyn College: CISC 3320 OS

Acknowledgement

• This slides are a revision of the slides by
the authors of the textbook

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 2

Outline

• Operating System Services

• User Operating System Interface

• System Calls

• Types of System Calls

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 3

A Computer System: Four
Components

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 4

OS Services and Functions

• Operating systems provide an environment for
execution of programs and services to programs
and users

• One set of operating-system services provides
functions that are helpful to the user

• Another set of OS functions exists for ensuring
the efficient operation of the system itself via
resource sharing

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 5

User Services

• User interface

• Program execution

• I/O operation

• File-system manipulation

• Communication

• Error detection

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 6

User Interface

• Almost all operating systems have a user
interface (UI)

• Command-Line Interface (CLI)

• Graphical User Interface (GUI)

• Batch Interface

• Touchscreen interface

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 7

Program Execution

• The system must be able

• to load a program into memory,

• to run that program, and

• end execution, either normally or abnormally
(indicating error)

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 8

I/O Operation

• A running program may require I/O, which
may involve a file or an I/O device

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 9

File-system Manipulation

• Programs need

• to read and write files and directories,

• to create and delete them,

• to search them,

• to list file Information, and

• to manage permissions

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 10

Communications

• Processes may exchange information

• on the same computer or

• between computers over a network

• Communications may be

• via shared memory or

• through message passing (packets moved by the OS)

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 11

Error Detection

• OS needs to be constantly aware of possible errors

• May occur in the CPU and memory hardware, in I/O
devices, in user program

• For each type of error, OS should take the appropriate
action to ensure correct and consistent computing

• Debugging facilities can greatly enhance the user’s and
programmer’s abilities to efficiently use the system

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 12

Questions?

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 13

System Functions

• Resource allocation

• Accounting

• Protection and security

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 14

Resource Allocation

• When multiple users or multiple jobs
running concurrently, resources must be
allocated to each of them

• Many types of resources

• CPU cycles
main memory

• file storage

• I/O devices.

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 15

Accounting

• To keep track of which users use how much
and what kinds of computer resources

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 16

Protection and Security

• The owners of information stored in a
multiuser or networked computer system
may want to control use of that information,
concurrent processes should not interfere
with each other
• Protection involves ensuring that all access to

system resources is controlled

• Security of the system from outsiders requires
user authentication, extends to defending
external I/O devices from invalid access
attempts

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 17

A View of OS Services and
Functions

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 18

Questions?

• Overview of services and functions for
system itself

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 19

User Operating System
Interface
• Command-Line Interface (CLI)

• Graphical User Interface (GUI)

• Touchscreen Interface

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 20

CLI

• Command Line Interface (CLI) or Command Interpreter

• CLI or command interpreter allows direct command entry

• Sometimes implemented in kernel, sometimes by systems
program

• Sometimes multiple flavors implemented

• Called shells

• Primarily fetches a command from user and executes it

• Sometimes commands built-in, sometimes just names of
programs

• If the latter, adding new features doesn’t require shell
modification

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 21

Example: Bourne Shell Command
Interpreter

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 22

GUI

• User-”friendly” desktop metaphor interface

• Usually mouse, keyboard, and monitor

• Icons represent files, programs, actions, etc

• Various mouse buttons over objects in the interface cause
various actions (provide information, options, execute function,
open directory (known as a folder)

• Invented at Xerox PARC

• Many systems now include both CLI and GUI interfaces

• Microsoft Windows is GUI with CLI “command” shell

• Apple Mac OS X is “Aqua” GUI interface with UNIX kernel
underneath and shells available

• Unix and Linux have CLI with optional GUI interfaces (CDE, KDE,
GNOME)

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 23

The Mac OS X GUI

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 24

Touchscreen Interfaces

• Touchscreen devices
require new interfaces

• Mouse not possible or not
desired

• Actions and selection
based on gestures

• Virtual keyboard for text
entry

• Voice commands.

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 25

Questions?

• Overview of different types of user
interface

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 26

System Calls

• Programming interface to the services
provided by the OS

• Typically written in a high-level language (C
or C++)

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 27

Examples of System Calls

• System call sequence to copy the contents
of one file to another file

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 28

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 29

Standard API vs. System Calls

• Mostly accessed by programs via a high-level
Application Programming Interface (API) rather
than direct system call use

• Three most common APIs

• Win32 API for Windows

• POSIX API for POSIX-based systems (including
virtually all versions of UNIX, Linux, and Mac OS X),
and

• Java API for the Java virtual machine (JVM)

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 30

Example of Standard API

• The read API in UNIX/Linux (POSIX read)

• The ReadFile API in Windows

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 31

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 32

http://pubs.opengroup.org/onlinepubs/9699919799/functions/read.html

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 33

https://docs.microsoft.com/en-us/windows/desktop/api/fileapi/nf-fileapi-readfile

Questions?

• System calls

• System call vs Library API

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 34

System Call Implementation

• Typically, a number associated with each system call

• System-call interface maintains a table indexed according to these
numbers

• The system call interface invokes the intended system call in
OS kernel and returns status of the system call and any
return values

• The caller need know nothing about how the system call is
implemented

• Just needs to obey API and understand what OS will do as a result
call

• Most details of OS interface hidden from programmer by API

• Managed by run-time support library (set of functions built into libraries
included with compiler)

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 35

API vs. System Call vs. OS

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 36

System Call Parameter Passing

• Often, more information is required than simply identity of desired
system call

• Exact type and amount of information vary according to OS and call

• Three general methods used to pass parameters to the OS

• Via registers: Simplest: pass the parameters in registers

• In some cases, may be more parameters than registers

• Via table: Parameters stored in a block, or table, in memory, and address of
block passed as a parameter in a register

• This approach taken by Linux and Solaris

• Via stack: Parameters placed, or pushed, onto the stack by the program and
popped off the stack by the operating system

• Block and stack methods do not limit the number or length of
parameters being passed

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 37

Parameter Passing via Table

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 38

Questions?

• Conceptual idea of system call
implementation

• How to pass parameters to system calls?

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 39

Types of System Calls

• Process control

• File management

• Device management

• Information maintenance

• Communication

• Protection

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 40

Process Control

• create process, terminate process

• end, abort

• load, execute

• get process attributes, set process attributes

• wait for time

• wait event, signal event

• allocate and free memory

• Dump memory if error

• Debugger for determining bugs, single step execution

• Locks for managing access to shared data between processes

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 41

File Management

• create file, delete file

• open, close file

• read, write, reposition

• get and set file attributes

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 42

Device Management

• request device, release device

• read, write, reposition

• get device attributes, set device attributes

• logically attach or detach devices

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 43

Information Maintenance

• get time or date, set time or date

• get system data, set system data

• get and set process, file, or device
attributes

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 44

Communication

• create, delete communication connection

• send, receive messages if message passing
model to host name or process name

• From client to server

• Shared-memory model create and gain access to
memory regions

• transfer status information

• attach and detach remote devices

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 45

Protection

• Control access to resources

• Get and set permissions

• Allow and deny user access

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 46

Examples of Windows and UNIX
System Calls
• Loosely speaking, the examples show the

APIs. The APIs wrap around system calls.

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 47

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 48

Questions?

• Overview of different types of system calls.

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 49

Standard C Library

• The standard C library provides a portion of
the system-call interface for many versions
of UNIX and Linux

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 50

Example of the standard C
Library API
• C program invoking printf() library call,

which calls write() system call

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 51

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 52

Standard C Library

• The standard C library provides a portion of
the system-call interface for many versions
of UNIX and Linux

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 53

Example of the standard C
Library API
• C program invoking printf() library call,

which calls write() system call

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 54

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 55

Questions?

• Standard C library and system calls

1/30/2019 CUNY | Brooklyn College: CISC 3320 OS 56

