CISC 3320 Thrashing & Working-Set Model

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

Acknowledgement

 These slides are a revision of the slides provided by the authors of the textbook via the publisher of the textbook

Outline

- Thrashing
- Working-set Model
- Page Fault Frequency

- Memory-Mapped Files
- Allocating Kernel Memory
- Other Considerations
- Operating-System Examples

Thrashing

- A process is busy swapping pages in and out
- When does it happen?

Thrashing: When Does it Happen?

- Example:
 - If a process does not have "enough" pages, the page-fault rate is very high
- Page fault to get page
- Replace existing frame
- But quickly need replaced frame back

Thrashing: Problem

- This leads to:
 - Low CPU utilization
 - Operating system thinking that it needs to increase the degree of multiprogramming
 - Another process added to the system ...

Demand Paging and Thrashing

- Why does demand paging work?
 - Locality model
 - Process migrates from one locality to another
 - Localities may overlap
- Why does thrashing occur when demand paging is in use?

 Σ size of locality > total memory size

Limit effects by using local or priority page replacement

Tackling Trashing

- Working-set model
- Page-fault frequency

Locality In A Memory-Reference Pattern

• Example

Working-Set Model

- ∆ = working-set window = a fixed number of page references Example: 10,000 instructions
- WSS_i (working set of Process P_i) = total number of pages referenced in the most recent ∆ (varies in time)
 - if Δ too small will not encompass entire locality
 - if Δ too large will encompass several localities
 - if $\Delta = \infty \Rightarrow$ will encompass entire program
- $D = \Sigma WSS_i \equiv \text{total demand frames}$
 - Approximation of locality

Example

Working-Set Model and Thrashing

• if $D > m \Rightarrow$ Thrashing

Reducing Thrashing

 Policy if D > m, then suspend or swap out one of the processes

Keeping Track of the Working Set

- Approximate with interval timer + a reference bit
- Example: $\Delta = 10,000$
 - Timer interrupts after every 5000 time units
 - Keep in memory 2 bits for each page
 - Whenever a timer interrupts copy and sets the values of all reference bits to 0
 - If one of the bits in memory = 1 \Rightarrow page in working set
- Why is this not completely accurate?
- Improvement = 10 bits and interrupt every 1000 time units

Page-Fault Frequency

- More direct approach than WSS
- Establish "acceptable" page-fault frequency (PFF) rate and use local replacement policy
 - If actual rate too low, process loses frame
 - If actual rate too high, process gains frame

number of frames

Working-Set and Page Fault Rate

- Direct relationship between working set of a process and its page-fault rate
- Working set changes over time
- Peaks and valleys over time

Questions?

- Trashing
- Working-set model
- Page fault frequency