CISC 3320 Virtual Memory

Hui Chen

Department of Computer & Information Science CUNY Brooklyn College

11/11/2019

Acknowledgement

 These slides are a revision of the slides provided by the authors of the textbook via the publisher of the textbook

Outline

- Background and basic concepts
 - Problems
 - Concept of virtual memory
 - Review of a few related concepts

Shortage of Physical Memory?

- Collectively in a multiprogramming system, the programs exceed physical memory.
- A single program may become too large to fit in physical memory.

Observations

- Code needs to be in memory to execute, but entire program rarely used
 - Error code, unusual routines, large data structures
- Entire program code not needed at same time

Addressing the Problems

- Consider ability to execute partially-loaded program
 - Program no longer constrained by limits of physical memory
 - Each program takes less memory while running
 - more programs run at the same time (increased degree of multiprogramming)
 - Increased CPU utilization and throughput with no increase in response time or turnaround time
 - Less I/O needed to load or swap programs into memory
 - Each user program runs faster

Introducing Virtual Memory

- Separation of user logical memory from physical memory
- Only part of the program needs to be in memory for execution

Logical Address and Physical Address Spaces

- Logical address space can therefore be much larger than physical address space
- Often called virtual address spaces

Virtual Memory

- Virtual address space/logical address space
 - logical view of how process is stored in memory
 - Usually start at address 0, contiguous addresses until end of space
 - Meanwhile, physical memory organized in page frames
 - MMU must map logical to physical
 - Pages stored in backing store , brought to memory when necessary

Backing Store

- Fast secondary storage large enough to accommodate copies of all memory images for all users
- Must provide direct access to these memory images

Logical Address Space: Common Design

- Usually design logical address space for stack to start at Max logical address and grow "down" while heap grows "up"
 - Maximizes address space use
 - Unused address space between the two is hole
- No physical memory needed until heap or stack grows to a given new page
- Enables sparse address spaces with holes left for growth, dynamically linked libraries, etc

Sharing

- System libraries shared via mapping into virtual address space
- Shared memory by mapping pages readwrite into virtual address space
- Pages can be shared during process creation (e.g., fork()), speeding process creation

Implementing Virtual Memory

- Demand paging (to discuss)
- Demand segmentation

Questions?

- Concept of virtual/logical address space and physical address space
- Benefit of separating virtual/physical address space
- Concept of paging
- Benefits of paging