
CISC 3320

Race Condition and Critical

Section
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

10/23/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides

provided by the authors of the textbook

via the publisher of the textbook

10/23/2019 CUNY | Brooklyn College 2

Outline

• Race condition

• The Critical-Section Problem

• Peterson’s Solution

10/23/2019 CUNY | Brooklyn College 3

Background

• Processes can execute concurrently

• May be interrupted at any time, partially
completing execution

• Concurrent access to shared data may result
in data inconsistency

• Maintaining data consistency requires
mechanisms to ensure the orderly execution
of cooperating processes

• Otherwise, a race condition occurs

• Examining two examples

10/23/2019 CUNY | Brooklyn College 4

Race Condition: Example 1

• Illustration of the problem using the
consumer-producer problem

• Suppose that we wanted to provide a solution to
the consumer-producer problem that fills all the
buffers.

• We can do so by having an integer counter that
keeps track of the number of full buffers.

• Initially, counter is set to 0.

• It is incremented by the producer after it
produces a new buffer and is decremented by the
consumer after it consumes a buffer.

10/23/2019 CUNY | Brooklyn College 5

Producer
while (true) {

/* produce an item in next produced */

while (counter == BUFFER_SIZE)

; /* do nothing */

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

10/23/2019 CUNY | Brooklyn College 6

Consumer

while (true) {

while (counter == 0)

; /* do nothing */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

/* consume the item in next consumed */

}

10/23/2019 CUNY | Brooklyn College 7

Increment and Decrement

Counter
• counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

• counter-- could be implemented as

register2 = counter
register2 = register2 - 1
counter = register2

10/23/2019 CUNY | Brooklyn College 8

Race Condition

• Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

10/23/2019 CUNY | Brooklyn College 9

Race Condition: Example 2

• Processes P0 and P1 are creating child

processes using the fork() system call

• Race condition on kernel variable

next_available_pid which represents the

next available process identifier (pid)

• The same pid could be assigned to two

different processes!

10/23/2019 CUNY | Brooklyn College 10

10/23/2019 CUNY | Brooklyn College 11

Questions?

• Race condition may occur when

processes/threads execute concurrently

• There is a need for process

synchronization

10/23/2019 CUNY | Brooklyn College 12

Critical Section Problem

• Consider system of n processes {p0, p1, … pn-1}

• Each process has critical section segment of code

• Process may be changing common variables, updating
table, writing file, etc

• When one process in critical section, no other may be in
its critical section otherwise a race condition may occur

• Critical section problem is to design protocol to
solve this

• The protocol

• Each process must ask permission to enter critical
section in entry section, may follow critical section with
exit section, then remainder section

10/23/2019 CUNY | Brooklyn College 13

Critical Section

• General structure of process Pi

10/23/2019 CUNY | Brooklyn College 14

Requirements to Critical-

Section Problem
• 3 requirements must be met

• Mutual Exclusion

• Progress

• Bounded Waiting

• Assume that each process executes at a
nonzero speed

• No assumption concerning relative speed of
the n processes

10/23/2019 CUNY | Brooklyn College 15

Mutual Exclusion

• If process Pi is executing in its critical

section, then no other processes can be

executing in their critical sections

10/23/2019 CUNY | Brooklyn College 16

Progress

• If no process is executing in its critical

section and there exist some processes

that wish to enter their critical section,

then the selection of the processes that

will enter the critical section next cannot

be postponed indefinitely

10/23/2019 CUNY | Brooklyn College 17

Bounded Waiting

• A bound must exist on the number of

times that other processes are allowed to

enter their critical sections after a

process has made a request to enter its

critical section and before that request is

granted

10/23/2019 CUNY | Brooklyn College 18

Questions?

• Requirements for critical section problem

• Mutual exclusion

• Progress

• Bounded waiting

10/23/2019 CUNY | Brooklyn College 19

Peterson’s Solution

• Not guaranteed to work on modern architectures! (But
good algorithmic description of solving the problem)

• Two-process solution

• Assume that the load and store machine-language instructions
are atomic; that is, cannot be interrupted

• The two processes P0 and P1 share two variables:

• int turn; boolean flag[2];

• The variable turn indicates whose turn it is to enter the critical
section

• The flag array is used to indicate if a process is ready to enter
the critical section.

• flag[i] = true implies that process Pi is ready!

• For convenience, we represent P0 and P1 as Pi and Pj

noting j = 1 – i and i = 1 – j where i, j {0, 1}
10/23/2019 CUNY | Brooklyn College 20

Algorithm for Process Pi

• Notice notations of “i" and Process Pi

10/23/2019 CUNY | Brooklyn College 21

while (true){

flag[i] = true;

turn = j;

while (flag[j] && turn = = j)

;

/* critical section */

flag[i] = false;

/* remainder section */

}

Peterson’s Solution: 3

Requirements
• Provable that the 3 critical section
requirement are met:

1. Mutual exclusion is preserved

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met

10/23/2019 CUNY | Brooklyn College 22

Peterson’s Solution: Mutual

Exclusion
• Note that

• Pi enters its critical section only if either flag[j] == false or turn == i.

• if both processes can be executing in their critical sections at the same
time, then flag[0] == flag[1] == true.

• These two observations imply that

• P0 and P1 could not have successfully executed their while statements at
about the same time, since the value of turn can be either 0 or 1 but
cannot be both.

• Therefore,

• one of the processes, e.g., Pj must have successfully executed the while
statement, whereas Pi had to execute at least one additional statement
(“turn == j”).

• However, at that time, flag[j] == true and turn == j, and this condition
will persist as long as Pj is in its critical section; as a result, mutual
exclusion is preserved.

10/23/2019 CUNY | Brooklyn College 23

Peterson’s Solution: Remarks

• Although useful for demonstrating an algorithm,
Peterson’s Solution is not guaranteed to work on
modern architectures.

• Understanding why it will not work is also useful for
better understanding race conditions.

• To improve performance, processors and/or
compilers may reorder operations that have no
dependencies.

• For single-threaded this is OK as the result will
always be the same.

• For multithreaded the reordering may produce
inconsistent or unexpected results!

10/23/2019 CUNY | Brooklyn College 24

Peterson’s Solution: 2-Thread

Example
• Two threads share the data:

boolean flag = false;

int x = 0;

• Thread 1 performs

while (!flag)

;

print x

• Thread 2 performs

x = 100;

flag = true

• What is the expected output?

10/23/2019 CUNY | Brooklyn College 25

Peterson’s Solution

• 100 is the expected output.

• However, the operations for Thread 2 may be
reordered:

flag = true;

x = 100;

• If this occurs, the output may be 0!

• The effects of instruction reordering in Peterson’s
Solution

• This allows both processes to be in their critical
section at the same time!

10/23/2019 CUNY | Brooklyn College 26

10/23/2019 CUNY | Brooklyn College 27

Questions?

• Peterson’s solution

• A software solution, a good description of an

algorithm solving the problem

• Is it guaranteed to work on modern

operating systems?

10/23/2019 CUNY | Brooklyn College 28

Critical-Section Handling in

OS
• Two approaches to handle critical sections

• Non-preemptive kernels

• Run until exits kernel mode, blocks, or voluntarily yields CPU,
i.e., only one process is active in the kernel at a time

• Essentially free of race conditions on kernel data structures as
only one process is active in the kernel at a time

• Preemptive kernels

• allow preemption of process when running in kernel mode, i.e.,
multiple processes are active in the kernel at a time

• Must handle critical section, which results in more
difficult/complex design of preemptive kernels than that of non-
preemptive kernels

• However, necessary for real-time and responsive kernels.

10/23/2019 CUNY | Brooklyn College 29

Questions?

• Critical section handling in OS kernels

• Non-preemptive kernels?

• Preemptive kernels?

10/23/2019 CUNY | Brooklyn College 30

