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Outline

• Race condition

• The Critical-Section Problem

• Peterson’s Solution
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Background

• Processes can execute concurrently

• May be interrupted at any time, partially 
completing execution

• Concurrent access to shared data may result 
in data inconsistency

• Maintaining data consistency requires 
mechanisms to ensure the orderly execution 
of cooperating processes

• Otherwise, a race condition occurs

• Examining two examples
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Race Condition: Example 1

• Illustration of the problem using the 
consumer-producer problem

• Suppose that we wanted to provide a solution to 
the consumer-producer problem that fills all the 
buffers. 

• We can do so by having an integer counter that 
keeps track of the number of full buffers.  

• Initially, counter is set to 0. 

• It is incremented by the producer after it 
produces a new buffer and is decremented by the 
consumer after it consumes a buffer.
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Producer
while (true) {

/* produce an item in next produced */ 

while (counter == BUFFER_SIZE)  

; /* do nothing */ 

buffer[in] = next_produced; 

in = (in + 1) % BUFFER_SIZE; 

counter++; 

}
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Consumer

while (true) {

while (counter == 0) 

; /* do nothing */ 

next_consumed = buffer[out]; 

out = (out + 1) % BUFFER_SIZE; 

counter--; 

/* consume the item in next consumed */ 

} 
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Increment and Decrement 

Counter
• counter++ could be implemented as

register1 = counter
register1 = register1 + 1
counter = register1

• counter-- could be implemented as

register2 = counter
register2 = register2 - 1
counter = register2
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Race Condition

• Consider this execution interleaving with “count = 5” initially:

S0: producer execute register1 = counter         {register1 = 5}
S1: producer execute register1 = register1 + 1   {register1 = 6} 
S2: consumer execute register2 = counter        {register2 = 5} 
S3: consumer execute register2 = register2 – 1  {register2 = 4} 
S4: producer execute counter = register1         {counter = 6 } 
S5: consumer execute counter = register2        {counter = 4}
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Race Condition: Example 2

• Processes P0 and P1 are creating child 

processes using the fork() system call

• Race condition on kernel variable 

next_available_pid which represents the 

next available process identifier (pid)

• The same pid could be assigned to two 

different processes!

10/23/2019 CUNY | Brooklyn College 10



10/23/2019 CUNY | Brooklyn College 11



Questions?

• Race condition may occur when 

processes/threads execute concurrently

• There is a need for process 

synchronization
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Critical Section Problem

• Consider system of n processes {p0, p1, … pn-1}

• Each process has critical section segment of code

• Process may be changing common variables, updating 
table, writing file, etc

• When one process in critical section, no other may be in 
its critical section otherwise a race condition may occur

• Critical section problem is to design protocol to 
solve this

• The protocol

• Each process must ask permission to enter critical 
section in entry section, may follow critical section with 
exit section, then remainder section
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Critical Section

• General structure of process Pi
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Requirements to Critical-

Section Problem
• 3 requirements must be met

• Mutual Exclusion

• Progress

• Bounded Waiting

• Assume that each process executes at a 
nonzero speed 

• No assumption concerning relative speed of 
the n processes
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Mutual Exclusion

• If process Pi is executing in its critical 

section, then no other processes can be 

executing in their critical sections
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Progress

• If no process is executing in its critical 

section and there exist some processes 

that wish to enter their critical section, 

then the selection of the processes that 

will enter the critical section next cannot 

be postponed indefinitely
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Bounded Waiting

• A bound must exist on the number of 

times that other processes are allowed to 

enter their critical sections after a 

process has made a request to enter its 

critical section and before that request is 

granted

10/23/2019 CUNY | Brooklyn College 18



Questions?

• Requirements for critical section problem

• Mutual exclusion

• Progress

• Bounded waiting
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Peterson’s Solution

• Not guaranteed to work on modern architectures! (But 
good algorithmic description of solving the problem)

• Two-process solution

• Assume that the load and store machine-language instructions 
are atomic; that is, cannot be interrupted

• The two processes P0 and P1 share two variables:

• int turn; boolean flag[2];

• The variable turn indicates whose turn it is to enter the critical 
section

• The flag array is used to indicate if a process is ready to enter 
the critical section. 

• flag[i] = true implies that process Pi is ready!

• For convenience, we represent P0 and P1 as Pi and Pj

noting j = 1 – i and i = 1 – j where i, j  {0, 1}
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Algorithm for Process Pi

• Notice notations of “i"  and Process Pi
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while (true){ 

flag[i] = true; 

turn = j;

while (flag[j] && turn = = j)

;

/* critical section */

flag[i] = false;

/* remainder section */

}



Peterson’s Solution: 3 

Requirements
• Provable that the 3 critical section 
requirement are met:

1. Mutual exclusion is preserved

2. Progress requirement is satisfied

3. Bounded-waiting requirement is met
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Peterson’s Solution: Mutual 

Exclusion
• Note that

• Pi enters its critical section only if either flag[j] == false or turn == i. 

• if both processes can be executing in their critical sections at the same 
time, then flag[0] == flag[1] == true. 

• These two observations imply that 

• P0 and P1 could not have successfully executed their while statements at 
about the same time, since the value of turn can be either 0 or 1 but 
cannot be both. 

• Therefore, 

• one of the processes, e.g., Pj must have successfully executed the while 
statement, whereas Pi had to execute at least one additional statement 
(“turn == j”). 

• However, at that time, flag[j] == true and turn == j, and this condition 
will persist as long as Pj is in its critical section; as a result, mutual 
exclusion is preserved.
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Peterson’s Solution: Remarks

• Although useful for demonstrating an algorithm, 
Peterson’s Solution is not guaranteed to work on 
modern architectures.

• Understanding why it will not work is also useful for 
better understanding race conditions.

• To improve performance, processors and/or 
compilers may reorder operations that have no 
dependencies.

• For single-threaded this is OK as the result will 
always be the same.

• For multithreaded the reordering may produce 
inconsistent or unexpected results!
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Peterson’s Solution: 2-Thread 

Example
• Two threads share the data:

boolean flag = false;

int x = 0;

• Thread 1 performs

while (!flag)

;

print x

• Thread 2 performs

x = 100;

flag = true

• What is the expected output?
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Peterson’s Solution

• 100 is the expected output.

• However, the operations for Thread 2 may be 
reordered:

flag = true;

x = 100;

• If this occurs, the output may be 0!

• The effects of instruction reordering in Peterson’s 
Solution

• This allows both processes to be in their critical 
section at the same time!
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Questions?

• Peterson’s solution

• A software solution, a good description of an 

algorithm solving the problem

• Is it guaranteed to work on modern 

operating systems? 
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Critical-Section Handling in 

OS
• Two approaches to handle critical sections

• Non-preemptive kernels

• Run until exits kernel mode, blocks, or voluntarily yields CPU, 
i.e., only one process is active in the kernel at a time

• Essentially free of race conditions on kernel data structures as 
only one process is active in the kernel at a time

• Preemptive kernels

• allow preemption of process when running in kernel mode, i.e., 
multiple processes are active in the kernel at a time

• Must handle critical section, which results in more 
difficult/complex design of preemptive kernels than that of non-
preemptive kernels

• However, necessary for real-time and responsive kernels. 
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Questions?

• Critical section handling in OS kernels

• Non-preemptive kernels?

• Preemptive kernels?
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