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OS Tools for Synchronization

• Previous solutions are complicated and 

generally inaccessible to application 

programmers

• OS designers build software tools to 

solve critical section problem

• Mutex lock

• Semaphore (with/without busy-waiting)

• Monitor
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Mutex Locks

• Protect a critical section  by 

• first acquire() a lock, then 

• release() the lock

• Calls to acquire() and release() must be 

atomic

• Boolean variable indicating if lock is 

available or not
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Solution to Critical-section 

Problem Using Locks
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while (true) { 

acquire(); /* acquire lock */

critical section 

release(); /* release lock  */

remainder section 

} 



Mutex Lock Definitions

• These two functions must be implemented atomically.

acquire() {
while (!available) 

; /* busy wait */ 

available = false; 

} 

release() { 

available = true; 

} 
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Implementing Mutex Lock

• Both test-and-set and compare-and-

swap can be used to implement these 

functions.

• How? 
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Mutex: Remark

• acquire() and release()  usually 

implemented via hardware atomic 

instructions such as compare-and-swap.

• But this solution requires busy waiting

• This type of mutex lock therefore called a 

spinlock
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Questions?

• Concept of mutex lock

• Implementation of mutex lock

• Concept of spinlock

• Advantage of disadvantage of spinlock
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Semaphore

• Synchronization tool that provides more 
sophisticated ways (than Mutex locks)  for 
process to synchronize their activities.

• Semaphore S

• integer variable

• Can only be accessed via two indivisible 
(atomic) operations

• wait() and signal()

• Originally called P() and V()

• Sometimes also called down() and up() (often in Unix)

10/28/2019 CUNY | Brooklyn College 11



Definition: wait() and signal()

wait()/P()/down()

wait(S) { 

while (S <= 0)

; // busy wait

S--;

}

signal()/V()/up()

signal(S) { 

S++;

}
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Semaphore Usage

• Counting semaphore

• integer value can range over an unrestricted 

domain

• Binary semaphore

• integer value can range only between 0 and 1

• Same as a mutex lock

• Can solve various synchronization problems
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Solution using Semaphore

• Consider P1  and P2 that require S1 to 
happen before S2

Create a semaphore “synch” initialized to 0 

P1:

S1;

signal(synch);

P2:

wait(synch);

S2;
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Semaphore Implementation

• Must guarantee that no two processes can 
execute  the wait() and signal() on the same 
semaphore at the same time

• Thus, the implementation becomes the critical 
section problem where the wait and signal code 
are placed in the critical section

• Could now have busy waiting in critical section 
implementation

• But implementation code is short

• Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in 
critical sections and therefore this is not a good 
solution
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Semaphore Implementation 

without Busy waiting
• With each semaphore there is an associated waiting queue

• Each entry in a waiting queue has two data items:

• value (of type integer)

• pointer to next record in the list

• Two operations:

• block – place the process invoking the operation on the appropriate 
waiting queue

• wakeup – remove one of processes in the waiting queue and place it in 
the ready queue

typedef struct { 

int value; 

struct process *list; 

} semaphore;
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wait(semaphore *S) { 

S->value--; 

if (S->value < 0) {

add this process 

to S->list; 

sleep(); 

} 

}

signal(semaphore *S) { 

S->value++; 

if (S->value <= 0) 

{

remove a process 

P from S->list; 

wakeup(P); 

} 

}
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sleep() and wakeup(P)

• The sleep() operation suspends the 

process that invokes it. 

• The wakeup(P) operation resumes the 

execution of a suspended process P. 

• These two operations are provided by the 

operating system as basic system calls.
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Problems with Semaphores

• Incorrect use of semaphore operations:

• signal (mutex)  ….  wait (mutex)

• wait (mutex)  …  wait (mutex)

• Omitting  of wait (mutex) and/or signal (mutex)

• These – and others – are examples of what can 
occur when semaphores and other 
synchronization tools are used incorrectly
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Questions?

• Definition Semaphore

• Implementation with or without busy-

waiting

• Problems with semaphore
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Monitors

• A high-level abstraction that provides a 

convenient and effective mechanism for 

process synchronization

• Abstract data type, internal variables 

only accessible by code within the 

procedure

• Only one process may be active within 

the monitor at a time
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Syntax of a Monitor

• Pseudocode syntax of a monitor:
monitor monitor-name

{

// shared variable declarations

function P1 (…) { …. }

function P2 (…) { …. }

function Pn (…) {……}

initialization code (…) { … }

}
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Schematic view of a Monitor
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Condition Variables

• condition x, y;

• Two operations are allowed on a condition 
variable:

• x.wait() 

• a process that invokes the operation is suspended 
until x.signal() 

• x.signal()

• resumes one of processes (if any) that invoked
x.wait()

• If no x.wait() on the variable, then it has no effect 

on the variable
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Monitor with Condition 

Variables
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Choices of Condition 

Variables
• If process P invokes x.signal(), and process Q is suspended 

in x.wait(), what should happen next?

• Both Q and P cannot execute in paralel. If Q is resumed, then P 
must wait

• Options include

• Signal and wait – P waits until Q either leaves the monitor or 
it waits for another condition

• Signal and continue – Q waits until P either leaves the 
monitor or it  waits for another condition

• Both have pros and cons – language implementer can decide

• Monitors implemented in Concurrent Pascal compromise

• P executing signal immediately leaves the monitor, Q is resumed

• Implemented in other languages including Mesa, C#, Java
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Monitor Implementation 

Using Semaphores
• Variables 

semaphore mutex;  // (initially  = 1)

semaphore next;   // (initially  = 0)

int next_count = 0;

• Each function F will be replaced by

wait(mutex);

…

body of F;

…

if (next_count > 0)

signal(next)

else 

signal(mutex);

• Mutual exclusion within a monitor is ensured
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Monitor Implementation –

Condition Variables
• For each condition variable x, we  have:

semaphore x_sem; // (initially  = 0)

int x_count = 0;

• The operation x.wait() can be implemented as:

x_count++;

if (next_count > 0)

signal(next);

else

signal(mutex);

wait(x_sem);

x_count--;
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Implementation of x.signal()

• The operation x.signal() can be implemented 
as:

if (x_count > 0) {

next_count++;

signal(x_sem);

wait(next);

next_count--;

}
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Resuming Processes within a 

Monitor
• If several processes queued on condition 
variable x, and x.signal() is executed, 

which process should be resumed?

• FCFS frequently not adequate 

• conditional-wait construct of the form 
x.wait(c)

• Where c is priority number

• Process with lowest number (highest priority) 
is scheduled next
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Resuming Processes

• Allocate a single resource among competing processes using 
priority numbers that specify the maximum time a process  
plans to use the resource

R.acquire(t);

...

access the resurce;

...

R.release(t);

• Where R is an instance of  type ResourceAllocator
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A Monitor to Allocate Single 

Resource
monitor ResourceAllocator

{ 

boolean busy; 

condition x; 

void acquire(int time) { 

if (busy) 

x.wait(time); 

busy = true; 

} 

void release() { 

busy = FALSE; 

x.signal(); 

} 

initialization code() {

busy = false; 

}

}
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Questions?

• Mutex lock

• Semaphore (with/without busy-waiting)

• Monitor
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Synchronization Issues 

• Liveness

• Deadlock

• Starvation

• Priority inversion
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Liveness

• Processes may have to wait indefinitely 
while trying to acquire a synchronization 
tool such as a mutex lock or semaphore.

• Waiting indefinitely violates the progress 
and bounded-waiting criteria discussed at 
the beginning of this chapter.

• Liveness refers to a set of properties that a 
system must satisfy to ensure processes 
make progress.

• Indefinite waiting is an example of a 
liveness failure.
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Deadlock
• Deadlock – two or more processes are waiting indefinitely for 

an event that can be caused by only one of the waiting 
processes

• Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S);                 signal(Q);

signal(Q);                 signal(S);

• Consider if P0 executes wait(S) and P1 wait(Q). When P0
executes wait(Q), it must wait until P1 executes signal(Q)

• However, P1 is waiting until P0 execute signal(S).

• Since these signal() operations will never be executed, P0 and P1 
are deadlocked.
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Starvation

• Starvation – indefinite blocking  

• A process may never be removed from the 

semaphore queue in which it is suspended
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Priority Inversion

• Priority Inversion – Scheduling problem 

when lower-priority process holds a lock 

needed by higher-priority process

• Solved via priority-inheritance protocol
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Priority Inheritance Protocol

• Consider the scenario with three processes P1, P2, and P3. P1 
has the highest priority, P2 the next highest, and P3 the lowest. 
Assume a resouce P3 is assigned a resource R that P1 wants. 
Thus, P1 must wait for P3 to finish using the resource. However, 
P2 becomes runnable and preempts P3. What has happened is 
that P2 - a process with a lower priority than P1 - has indirectly 
prevented P3 from gaining access to the resource.

• To prevent this from occurring, a priority inheritance protocol is 
used. This simply allows the priority of the highest thread 
waiting to access a shared resource to be assigned to the thread 
currently using the resource. Thus, the current owner of the 
resource is assigned the priority of the highest priority thread 
wishing to acquire the resource.
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Mars Pathfinder: Priority

Inversion
• A notable example of occurrence of the 

priority inversion problem is on NASA’s 

Mars Pathfinder
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Questions?

• The Critical-Section Problem

• Peterson’s Solution

• Hardware Support for Synchronization

• Mutex Locks

• Semaphores

• Monitors

• Liveness

• Evaluation
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