
CISC 3320

OS Tools for

Synchronization
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

10/28/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides

provided by the authors of the textbook

via the publisher of the textbook

10/28/2019 CUNY | Brooklyn College 2

Outline

• Mutex Locks (Binary Semaphores)

• Semaphores

• Monitors

• Liveness

• Evaluation

10/28/2019 CUNY | Brooklyn College 3

OS Tools for Synchronization

• Previous solutions are complicated and

generally inaccessible to application

programmers

• OS designers build software tools to

solve critical section problem

• Mutex lock

• Semaphore (with/without busy-waiting)

• Monitor

10/28/2019 CUNY | Brooklyn College 4

Mutex Locks

• Protect a critical section by

• first acquire() a lock, then

• release() the lock

• Calls to acquire() and release() must be

atomic

• Boolean variable indicating if lock is

available or not

10/28/2019 CUNY | Brooklyn College 5

Solution to Critical-section

Problem Using Locks

10/28/2019 CUNY | Brooklyn College 6

while (true) {

acquire(); /* acquire lock */

critical section

release(); /* release lock */

remainder section

}

Mutex Lock Definitions

• These two functions must be implemented atomically.

acquire() {
while (!available)

; /* busy wait */

available = false;

}

release() {

available = true;

}

10/28/2019 CUNY | Brooklyn College 7

Implementing Mutex Lock

• Both test-and-set and compare-and-

swap can be used to implement these

functions.

• How?

10/28/2019 CUNY | Brooklyn College 8

Mutex: Remark

• acquire() and release() usually

implemented via hardware atomic

instructions such as compare-and-swap.

• But this solution requires busy waiting

• This type of mutex lock therefore called a

spinlock

10/28/2019 CUNY | Brooklyn College 9

Questions?

• Concept of mutex lock

• Implementation of mutex lock

• Concept of spinlock

• Advantage of disadvantage of spinlock

10/28/2019 CUNY | Brooklyn College 10

Semaphore

• Synchronization tool that provides more
sophisticated ways (than Mutex locks) for
process to synchronize their activities.

• Semaphore S

• integer variable

• Can only be accessed via two indivisible
(atomic) operations

• wait() and signal()

• Originally called P() and V()

• Sometimes also called down() and up() (often in Unix)

10/28/2019 CUNY | Brooklyn College 11

Definition: wait() and signal()

wait()/P()/down()

wait(S) {

while (S <= 0)

; // busy wait

S--;

}

signal()/V()/up()

signal(S) {

S++;

}

10/28/2019 CUNY | Brooklyn College 12

Semaphore Usage

• Counting semaphore

• integer value can range over an unrestricted

domain

• Binary semaphore

• integer value can range only between 0 and 1

• Same as a mutex lock

• Can solve various synchronization problems

10/28/2019 CUNY | Brooklyn College 13

Solution using Semaphore

• Consider P1 and P2 that require S1 to
happen before S2

Create a semaphore “synch” initialized to 0

P1:

S1;

signal(synch);

P2:

wait(synch);

S2;

10/28/2019 CUNY | Brooklyn College 14

Semaphore Implementation

• Must guarantee that no two processes can
execute the wait() and signal() on the same
semaphore at the same time

• Thus, the implementation becomes the critical
section problem where the wait and signal code
are placed in the critical section

• Could now have busy waiting in critical section
implementation

• But implementation code is short

• Little busy waiting if critical section rarely occupied

• Note that applications may spend lots of time in
critical sections and therefore this is not a good
solution

10/28/2019 CUNY | Brooklyn College 15

Semaphore Implementation

without Busy waiting
• With each semaphore there is an associated waiting queue

• Each entry in a waiting queue has two data items:

• value (of type integer)

• pointer to next record in the list

• Two operations:

• block – place the process invoking the operation on the appropriate
waiting queue

• wakeup – remove one of processes in the waiting queue and place it in
the ready queue

typedef struct {

int value;

struct process *list;

} semaphore;

10/28/2019 CUNY | Brooklyn College 16

wait(semaphore *S) {

S->value--;

if (S->value < 0) {

add this process

to S->list;

sleep();

}

}

signal(semaphore *S) {

S->value++;

if (S->value <= 0)

{

remove a process

P from S->list;

wakeup(P);

}

}

10/28/2019 CUNY | Brooklyn College 17

sleep() and wakeup(P)

• The sleep() operation suspends the

process that invokes it.

• The wakeup(P) operation resumes the

execution of a suspended process P.

• These two operations are provided by the

operating system as basic system calls.

10/28/2019 CUNY | Brooklyn College 18

Problems with Semaphores

• Incorrect use of semaphore operations:

• signal (mutex) …. wait (mutex)

• wait (mutex) … wait (mutex)

• Omitting of wait (mutex) and/or signal (mutex)

• These – and others – are examples of what can
occur when semaphores and other
synchronization tools are used incorrectly

10/28/2019 CUNY | Brooklyn College 19

Questions?

• Definition Semaphore

• Implementation with or without busy-

waiting

• Problems with semaphore

10/28/2019 CUNY | Brooklyn College 20

Monitors

• A high-level abstraction that provides a

convenient and effective mechanism for

process synchronization

• Abstract data type, internal variables

only accessible by code within the

procedure

• Only one process may be active within

the monitor at a time

10/28/2019 CUNY | Brooklyn College 21

Syntax of a Monitor

• Pseudocode syntax of a monitor:
monitor monitor-name

{

// shared variable declarations

function P1 (…) { …. }

function P2 (…) { …. }

function Pn (…) {……}

initialization code (…) { … }

}

10/28/2019 CUNY | Brooklyn College 22

Schematic view of a Monitor

10/28/2019 CUNY | Brooklyn College 23

Condition Variables

• condition x, y;

• Two operations are allowed on a condition
variable:

• x.wait()

• a process that invokes the operation is suspended
until x.signal()

• x.signal()

• resumes one of processes (if any) that invoked
x.wait()

• If no x.wait() on the variable, then it has no effect

on the variable

10/28/2019 CUNY | Brooklyn College 24

Monitor with Condition

Variables

10/28/2019 CUNY | Brooklyn College 25

Choices of Condition

Variables
• If process P invokes x.signal(), and process Q is suspended

in x.wait(), what should happen next?

• Both Q and P cannot execute in paralel. If Q is resumed, then P
must wait

• Options include

• Signal and wait – P waits until Q either leaves the monitor or
it waits for another condition

• Signal and continue – Q waits until P either leaves the
monitor or it waits for another condition

• Both have pros and cons – language implementer can decide

• Monitors implemented in Concurrent Pascal compromise

• P executing signal immediately leaves the monitor, Q is resumed

• Implemented in other languages including Mesa, C#, Java

10/28/2019 CUNY | Brooklyn College 26

Monitor Implementation

Using Semaphores
• Variables

semaphore mutex; // (initially = 1)

semaphore next; // (initially = 0)

int next_count = 0;

• Each function F will be replaced by

wait(mutex);

…

body of F;

…

if (next_count > 0)

signal(next)

else

signal(mutex);

• Mutual exclusion within a monitor is ensured

10/28/2019 CUNY | Brooklyn College 27

Monitor Implementation –

Condition Variables
• For each condition variable x, we have:

semaphore x_sem; // (initially = 0)

int x_count = 0;

• The operation x.wait() can be implemented as:

x_count++;

if (next_count > 0)

signal(next);

else

signal(mutex);

wait(x_sem);

x_count--;

10/28/2019 CUNY | Brooklyn College 28

Implementation of x.signal()

• The operation x.signal() can be implemented
as:

if (x_count > 0) {

next_count++;

signal(x_sem);

wait(next);

next_count--;

}

10/28/2019 CUNY | Brooklyn College 29

Resuming Processes within a

Monitor
• If several processes queued on condition
variable x, and x.signal() is executed,

which process should be resumed?

• FCFS frequently not adequate

• conditional-wait construct of the form
x.wait(c)

• Where c is priority number

• Process with lowest number (highest priority)
is scheduled next

10/28/2019 CUNY | Brooklyn College 30

Resuming Processes

• Allocate a single resource among competing processes using
priority numbers that specify the maximum time a process
plans to use the resource

R.acquire(t);

...

access the resurce;

...

R.release(t);

• Where R is an instance of type ResourceAllocator

10/28/2019 CUNY | Brooklyn College 31

A Monitor to Allocate Single

Resource
monitor ResourceAllocator

{

boolean busy;

condition x;

void acquire(int time) {

if (busy)

x.wait(time);

busy = true;

}

void release() {

busy = FALSE;

x.signal();

}

initialization code() {

busy = false;

}

}

10/28/2019 CUNY | Brooklyn College 32

Questions?

• Mutex lock

• Semaphore (with/without busy-waiting)

• Monitor

10/28/2019 CUNY | Brooklyn College 33

Synchronization Issues

• Liveness

• Deadlock

• Starvation

• Priority inversion

10/28/2019 CUNY | Brooklyn College 34

Liveness

• Processes may have to wait indefinitely
while trying to acquire a synchronization
tool such as a mutex lock or semaphore.

• Waiting indefinitely violates the progress
and bounded-waiting criteria discussed at
the beginning of this chapter.

• Liveness refers to a set of properties that a
system must satisfy to ensure processes
make progress.

• Indefinite waiting is an example of a
liveness failure.

10/28/2019 CUNY | Brooklyn College 35

Deadlock
• Deadlock – two or more processes are waiting indefinitely for

an event that can be caused by only one of the waiting
processes

• Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

... ...

signal(S); signal(Q);

signal(Q); signal(S);

• Consider if P0 executes wait(S) and P1 wait(Q). When P0
executes wait(Q), it must wait until P1 executes signal(Q)

• However, P1 is waiting until P0 execute signal(S).

• Since these signal() operations will never be executed, P0 and P1
are deadlocked.

10/28/2019 CUNY | Brooklyn College 36

Starvation

• Starvation – indefinite blocking

• A process may never be removed from the

semaphore queue in which it is suspended

10/28/2019 CUNY | Brooklyn College 37

Priority Inversion

• Priority Inversion – Scheduling problem

when lower-priority process holds a lock

needed by higher-priority process

• Solved via priority-inheritance protocol

10/28/2019 CUNY | Brooklyn College 38

Priority Inheritance Protocol

• Consider the scenario with three processes P1, P2, and P3. P1
has the highest priority, P2 the next highest, and P3 the lowest.
Assume a resouce P3 is assigned a resource R that P1 wants.
Thus, P1 must wait for P3 to finish using the resource. However,
P2 becomes runnable and preempts P3. What has happened is
that P2 - a process with a lower priority than P1 - has indirectly
prevented P3 from gaining access to the resource.

• To prevent this from occurring, a priority inheritance protocol is
used. This simply allows the priority of the highest thread
waiting to access a shared resource to be assigned to the thread
currently using the resource. Thus, the current owner of the
resource is assigned the priority of the highest priority thread
wishing to acquire the resource.

10/28/2019 CUNY | Brooklyn College 39

Mars Pathfinder: Priority

Inversion
• A notable example of occurrence of the

priority inversion problem is on NASA’s

Mars Pathfinder

10/28/2019 CUNY | Brooklyn College 40

https://www.google.com/search?q=Mars+Pathfinder+Priority+Inversion

Questions?

• The Critical-Section Problem

• Peterson’s Solution

• Hardware Support for Synchronization

• Mutex Locks

• Semaphores

• Monitors

• Liveness

• Evaluation

10/28/2019 CUNY | Brooklyn College 41

