CISC 3320
Process Synchronization:

OS Examples

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Acknowledgement

* These slides are a revision of the slides
provided by the authors of the textbook
via the publisher of the textbook

Outline

* Synchronization within the kernel
« Windows
e Linux

« POSIX

 Java

« Alternative Approaches

Windows Kernel

Synchronization

» Uses interrupt masks to protect access to
global resources on uniprocessor
systems

» Uses spinlocks on multiprocessor
systems

« Spinlocking-thread will never be preempted

Windows Dispatcher Objects

e Qutside of the kernel

« Also provides dispatcher objects which may act
mutexes, semaphores, events, and timers

« Events
« An event acts much like a condition variable

« Timers notify one or more thread when time
expired

« Dispatcher objects either signaled-state (object
available) or non-signaled state (thread will
block)

10/28/2019 CUNY | Brooklyn College 5

Mutex Dispatcher Object

owner thread releases mutex lock

thread acquires mutex lock

10/28/2019 CUNY | Brooklyn College

Linux Synchronization

e Linux:

* Prior to kernel Version 2.6, disables interrupts to
implement short critical sections

« Version 2.6 and later, fully preemptive

* Linux provides:
« Semaphores
« atomic integers
« spinlocks
- reader-writer versions of both

* On single-CPU system, spinlocks replaced by
enabling and disabling kernel preemption

Atomic Operations

« Atomic variables

atomic_t is the type for atomic
Integer

e Consider the variables

* atomi c_t counter;

Atomic Operation Effect

atomic_set (&counter,5) ; counter = 5
atomic_add(10,&counter) ; counter = counter + 10
atomic_sub(4,&counter) ; counter = counter - 4
atomic_inc(&counter) ; counter = counter + 1
value = atomic_read(&counter); | value = 12

10/28/2019 CUNY | Brooklyn College

Questions?

* Synchronization within the kernel
« Windows

e Linux

POSIX Synchronization

« POSIX API provides

 mutex locks
« semaphores

« condition variable

« Widely used on UNIX, Linux, and macOS

POSIX Mutex Locks

 Creatina and initializina the lock

#include <pthread.h>
pthread mutex t mutex;

/* create and initialize the mutex lock */
pthread mutex_init(&mutex,NULL) ;

« Acquiring ana reieasing tne 10CK

/* acquire the mutex lock */
pthread mutex_lock (&mutex) ;

/* critical section */

/* release the mutex lock */
pthread mutex_unlock (&mutex) ;

10/28/2019 CUNY | Brooklyn College 11

POSIX Semaphores

« POSIX provides two versions

- named and unnamed.

 N\amed semaphores can be used by
unrelated processes, unnamed cannot.

POSIX Named Semaphores

» Creating an initializing the semaphore:

#include <semaphore.h>
sem_t *sem;

/* Create the semaphore and initialize it to 1 */
sem = sem_open("SEM", O0_CREAT, 0666, 1);

Another process can access the semaphore by
referring to its name SEM.

« Acquiring and releasing the semaphore:

/* acquire the semaphore */
sem_wait(sem) ;

/* critical section */

/* release the semaphore */
sem_post(sem) ;
10/28/2019 CUNY | Brooklyn College 13

POSIX Unnamed Semaphores

* Creating an initializing the semaphore:

#include <semaphore.h>
sem_t sem,;

/* Create the semaphore and initialize it to 1 */
sem_init(&sem, 0, 1);

* Acquiring and releasing the semaphore:

10/28/2019

/* acquire the semaphore */
sem_wait (&sem) ;

/* critical section */

/* release the semaphore */
sem_post (&sem) ;

CUNY | Brooklyn College 14

POSIX Condition Variables

* Since POSIX is typically used in C/C++
and these languages do not provide a
monitor, POSIX condition variables are
associated with a POSIX mutex lock to
provide mutual exclusion:

* Creating and initializing the condition

variable: pthread mutex_t mutex;
pthread _cond t cond_var;

pthread mutex_init (&mutex,NULL) ;
pthread _cond _init(&cond _var ,NULL) ;

POSIX Condition Variables

« Thread waiting for the condition a ==
to become tr pthread mutex_lock(&mutex) ;

while (a !'= b)
pthread_cond wait(&cond var, &mutex) ;

pthread mutex unlock(&mutex) ;

* Thread signaling another thread waiting
on the condition variable:

pthread mutex_lock(&mutex) ;

a = b;

pthread_cond _signal (&cond var) ;
pthread mutex unlock(&mutex) ;

10/28/2019 CUNY | Brooklyn College 16

Examples Programs with
POSIX Semaphores and

Mutexes

« A few versions of the solution to the
Producer-Consumer problem

Java Synchronization

« Java provides rich set of synchronization
features:

e Java monitors
« Reentrant locks
« Semaphores

e Condition variables

Java Monitors

« Every Java object has associated with it a
single lock.

« If @ method is declared as synchronized, a

calling thread must own the lock for the
object.

 If the lock is owned by another thread, the
calling thread must wait for the lock until it
IS released.

* Locks are released when the owning thread
exits the synchronized method.

Bounded Buffer using Java

Synchronization
« Example program using Java monitor

10/28/2019

public class BoundedBuffer<E>

{

}

private static final int BUFFER SIZE = 5;

private int count, in, out;
private E[] buffer;

public BoundedBuffer() {
count = 0;
in = 0;
out = 0;

buffer = (E[]) new Object [BUFFER _SIZE];

}

/* Producers call this method */

public synchronized void insert(E item) {
/* See Figure 7.11 */

}

/* Consumers call this method */

public synchronized E remove() {
/* See Figure 7.11 x/

}

CUNY | Brooklyn College

21

/* Producers call this method */

public synchronized void insert(E item) {
while (count == BUFFER SIZE) {

try {
wait();
}

catch (InterruptedException ie) { }

}

buffer[in] = item;
in = (in + 1) % BUFFER_SIZE;
count++;

notify();

10/28/2019 CUNY | Brooklyn College

22

10/28/2019

/* Consumers call this method */
public synchronized E remove() {
E item;

while (count == 0) {

try {
wait();
}

catch (InterruptedException ie) { }

}

item = buffer[out];
out = (out + 1) % BUFFER_SIZE;
count——;

notify();

return item;

CUNY | Brooklyn College

23

Java Synchronization

* A thread that tries to acquire an
unavailable lock is placed in the object’s
entry set:

acquire lock

S S

entry set

Java Synchronization

« Similarly, each object also has a wait set.
 When a thread calls wait():

* [t releases the lock for the object

* The state of the thread is set to blocked

 The thread is placed in the wait set for
the Objcpf acquire lock

S NS0T

entry set

wait set

Java Synchronization

« A thread typically calls wait() when it is waiting
for a condition to become true.

« How does a thread get notified?
 When a thread calls notify():

« An arbitrary thread T is selected from the wait
set

1. T is moved from the wait set to the entry set
2. Set the state of T from blocked to runnable.

3. T can now compete for the lock to check if the
condition it was waiting for is now true.

Questions?

 Java monitor

« Example program

Java Reentrant Locks

 Similar to mutex locks

 The £inally clause ensures the lock will
be released in case an exception occurs
in the try b™ ., |

Lock key = new ReentrantLock();

key.lock () ;

tEY 4
/* critical section */

}

finally {
key.unlock() ;

}

Java Semaphores

 Constructor:

- Usage:

10/28/2019

Semaphore(int value);

Semaphore sem = new Semaphore(1);

BEY 4
sem.acquire() ;

/* critical section */

}

catch (InterruptedException ie) { }
finally {

sem.release() ;
}

CUNY | Brooklyn College 29

Java Condition Variables

 Condition variables are associated with an
Reentrantlock.

» Creating a condition variable using
newCondition () method of ReentrantLock:

Lock key = new ReentrantLock();
Condition condVar = key.newCondition();

* A thread waits by calling the await ()
method, and signals by calling the signal ()
method.

Java Condition Variables

 Example:
« Five threads numbered O .. 4
« Shared variable turn indicating which thread’s turn it is.

« Thread calls doWwork () when it wishes to do some work.
(But it may only do work if it is their turn.

« If not their turn, wait
« If their turn, do some work for awhile
« When completed, notify the thread whose turn is next.

 Necessary data structures:

Lock lock = new ReentrantLock();
Condition[] condVars = new Condition[5];

for (int i = 0; i < 5; i++)
condVars[i] = lock.newCondition();

/* threadNumber is the thread that wishes to do some work */
public void doWork(int threadNumber)

{
lock.lock();
try {
/ %%
* If it’s not my turn, then wait
* until I’m signaled.
*/
if (threadNumber != turn)
condVars [threadNumber] . await();
/ **
* Do some work for awhile ..
*/
/ **
* Now signal to the next thread.
*/
turn = (turn + 1) % 5;
condVars [turn] .signal();
}
catch (InterruptedException ie) { }
finally {
lock.unlock();
}
}

10/28/2019 CUNY | Brooklyn College

Questions?

* In Java,
« Reentrant locks
« Semaphores

 Condition variables

Alternative Approaches

e Transactional Memory
* OpenMP

* Functional Programming Languages

Transactional Memory

« Consider a function update() that must be called atomically. One option is to

use mutex locks:
void update ()

{

acquire() ;
/* modify shared data */

release();

}

« A memory transaction is a sequence of read-write operations to memory that
are performed atomically. A transaction can be completed by adding
atomic{S} which ensure statements in S are executed atomically:

void update ()

{

atomic {
/* modify shared data */
}

}

10/28/2019 CUNY | Brooklyn College 35

OpenMP

« OpenMP is a set of compiler directives and API that support
parallel progamming.

void update(int value)

{
#pragma omp critical
{
count += value
by
b

 The code contained within the #pragma omp critical directive is
treated as a critical section and performed atomically.

Functional Programming
Languages

« Functional programming languages offer a
different paradigm than procedural
languages in that they do not maintain
state.

 Variables are treated as immutable and
cannot change state once they have been
assigned a value.

* There is increasing interest in functional
languages such as Erlang and Scala for their
approach in handling data races.

Questions?

e Transactional Memory
 OpenMP
* Functional Programming Languages

