
CISC 3320

Hardware Support for

Synchronization
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

10/23/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides

provided by the authors of the textbook

via the publisher of the textbook

10/23/2019 CUNY | Brooklyn College 2

Outline

• Concept of lock

• Uniprocessor and multiprocessor system

• Memory barrier

• Special instructions

• Atomic variables

10/23/2019 CUNY | Brooklyn College 3

Synchronization

• Conceptually, any solution to the critical-

section problem can be viewed as to

constructing a simple tool, called a “lock”

• A process must acquire a lock before

entering a critical section, and releases

the lock when it exits the critical section

10/23/2019 CUNY | Brooklyn College 4

Recall Peterson’s Solution:

Algorithm for Process Pi
• Notice notations of “i" and Process Pi

10/23/2019 CUNY | Brooklyn College 5

while (true){

flag[i] = true;

turn = j;

while (flag[j] && turn = = j)

;

/* critical section */

flag[i] = false;

/* remainder section */

}

Release the lock

Acquire a lock

Synchronization Hardware

• As discussed, software-based solutions

(like Peterson’s Solution) are not

guaranteed to work on modern computer

architectures

• Many systems provide hardware support

for synchronization

• Uniprocessor systems

• Multiprocessor systems

10/23/2019 CUNY | Brooklyn College 6

Uniprocessor Systems

• Disable interrupts

• Currently running code would execute
without preemption

• Generally too inefficient on multiprocessor
systems

10/23/2019 CUNY | Brooklyn College 7

Hardware Support for

Synchronization
• We will look at three forms of hardware

support:

1. Memory barriers

2. Hardware instructions

3. Atomic variables

10/23/2019 CUNY | Brooklyn College 8

Memory Barriers

• Memory model are the memory guarantees that a
computer architecture makes to application programs.

• Memory models may be either:

• Strongly ordered – where a memory modification of one
processor is immediately visible to all other processors.

• Weakly ordered – where a memory modification of one
processor may not be immediately visible to all other
processors.

• A memory barrier is an instruction that forces any change
in memory to be propagated (made visible) to all other
processors.

10/23/2019 CUNY | Brooklyn College 9

Recall Peterson’s Solution: 2-

Thread Example
• Two threads share the data:

boolean flag = false;

int x = 0;

• Thread 1 performs

while (!flag)

;

print x

• Thread 2 performs

x = 100;

flag = true

• What is the expected output?

10/23/2019 CUNY | Brooklyn College 10

Recall Peterson’s Solution:

After Instruction Reordering
• 100 is the expected output.

• However, the operations for Thread 2 may be
reordered:

flag = true;

x = 100;

• If this occurs, the output may be 0!

• The effects of instruction reordering in Peterson’s
Solution

• This allows both processes to be in their critical
section at the same time!

10/23/2019 CUNY | Brooklyn College 11

Solution using Memory

Barrier
• We could add a memory barrier to the following

instructions to ensure Thread 1 outputs 100:

• Thread 1 now performs

while (!flag)

memory_barrier();

print x

• Thread 2 now performs

x = 100;

memory_barrier();

flag = true

10/23/2019 CUNY | Brooklyn College 12

Questions?

• Concept of memory barrier

10/23/2019 CUNY | Brooklyn College 13

Hardware Instructions

• Special hardware instructions that allow

us to either test-and-modify the content

of a word, or two swap the contents of

two words atomically (uninterruptibly.)

• Test-and-Set instruction

• Compare-and-Swap instruction

10/23/2019 CUNY | Brooklyn College 14

test_and_set Instruction

Definition:

boolean test_and_set (boolean *target)

{

boolean rv = *target;

*target = true;

return rv:

}

1. Executed atomically

2. Returns the original value of passed
parameter

3. Set the new value of passed parameter to
true

10/23/2019 CUNY | Brooklyn College 15

Solution using test_and_set()

• Shared Boolean variable lock, initialized to false

• Solution:

while (true) {

while (test_and_set(&lock))

; /* do nothing */

/* critical section */

lock = false;

/* remainder section */

}

10/23/2019 CUNY | Brooklyn College 16

Release the lock

Acquire a lock

compare_and_swap

Instruction
Definition:

int compare_and_swap(int *value, int expected, int

new_value) {

int temp = *value;

if (*value == expected) *value = new_value;

return temp;

}

1. Executed atomically

2. Returns the original value of passed parameter value

3. Set the variable value the value of the passed
parameter new_value but only if *value == expected
is true. That is, the swap takes place only under this
condition.

10/23/2019 CUNY | Brooklyn College 17

Solution using

compare_and_swap
• Shared integer lock initialized to 0;

• Solution:

while (true){

while (compare_and_swap(&lock, 0, 1) != 0)

; /* do nothing */

/* critical section */

lock = 0;

/* remainder section */

}

10/23/2019 CUNY | Brooklyn College 18

Acquire a
lock

Release the lock

Bounded Waiting?

• Although these algorithms satisfy the

mutual-exclusion requirement, they do

not satisfy the bounded-waiting

requirement

• Why?

10/23/2019 CUNY | Brooklyn College 19

Bounded-Waiting Mutual

Exclusion
• Demonstrate it using with compare-and-

swap

• Two variables

• boolean waiting[n];

• int lock;

• The elements in the waiting array are

initialized to false, and lock is initialized

to 0.

10/23/2019 CUNY | Brooklyn College 20

Bounded-Waiting Mutual

Exclusion with compare-and-

swap
while (true) {

waiting[i] = true;

key = 1;

while (waiting[i] && key == 1)

key =

compare_and_swap(&lock,0,1);

waiting[i] = false;

/* critical section */

// scan (i+1,i+2,…n-1,0,…,i-1)

j = (i + 1) % n;

while ((j != i) && !waiting[j])

j = (j + 1) % n;

if (j == i)

lock = 0;

else

waiting[j] = false;

/* remainder section */

}

10/23/2019 CUNY | Brooklyn College 21

Bounded Waiting

• When a process leaves its critical section, it

scans the array waiting in the cyclic ordering

(i + 1, i + 2, …, n − 1, 0, …, i − 1).

• It designates the first process in this

ordering that is in the entry section

(waiting[j] == true) as the next one to

enter the critical section.

• Any process waiting to enter its critical

section will thus do so within n − 1 turns.

10/23/2019 CUNY | Brooklyn College 22

Atomic Variables

• Typically, instructions such as compare-and-
swap are used as building blocks for other
synchronization tools.

• One tool is an atomic variable that provides
atomic (uninterruptible) updates on basic data
types such as integers and booleans.

• For example, the increment() operation on the
atomic variable sequence ensures sequence is

incremented without interruption:

increment(&sequence);

10/23/2019 CUNY | Brooklyn College 23

Solution using Atomic

Variables
• The increment() function can be implemented

as follows:

void increment(atomic_int *v)

{

int temp;

do {

temp = *v;

}

while (temp !=

(compare_and_swap(v,temp,temp+1));

}

10/23/2019 CUNY | Brooklyn College 24

Questions?

• Concept of “lock”

• Synchronization hardware

• Concept of lock

• Uniprocessor and multiprocessor system

• Memory barrier

• Special instructions

• Atomic variables

10/23/2019 CUNY | Brooklyn College 25

