CISC 3320
Hardware Support for

Synchronization

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College



Acknowledgement

* These slides are a revision of the slides
provided by the authors of the textbook
via the publisher of the textbook



Outline

« Concept of lock

« Uniprocessor and multiprocessor system
« Memory barrier

» Special instructions

« Atomic variables



Synchronization

« Conceptually, any solution to the critical-
section problem can be viewed as to
constructing a simple tool, called a “lock”

« A process must acquire a lock before
entering a critical section, and releases
the lock when it exits the critical section




Recall Peterson’s Solution:

Algorithm for Process P
 Notice notations of “i" and Process P,

while (true) {

flag[i] = true;
turn = j; Acquire a lock
while (flag[j] && turn = = j)

/* critical section */

flag[i] = false; } Release the lock

/* remainder section */




Synchronization Hardware

« As discussed, software-based solutions
(like Peterson’s Solution) are not
guaranteed to work on modern computer
architectures

« Many systems provide hardware support
for synchronization

« Uniprocessor systems

» Multiprocessor systems



Uniprocessor Systems

« Disable interrupts

« Currently running code would execute
without preemption

« Generally too inefficient on multiprocessor
systems



Hardware Support for

Synchronization

 We will look at three forms of hardware
support:

1. Memory barriers
2. Hardware instructions

3. Atomic variables



Memory Barriers

« Memory model are the memory guarantees that a
computer architecture makes to application programs.

Memory models may be either:

« Strongly ordered - where a memory modification of one
processor is immediately visible to all other processors.

 Weakly ordered - where a memory modification of one
processor may not be immediately visible to all other
processors.

A memory barrier is an instruction that forces any change
in memory to be propagated (made visible) to all other
processors.



Recall Peterson’s Solution: 2-
Thread Example

« Two threads share the data:

boolean flag = false;
int x = 0;

« Thread 1 performs

while (!flaqg)

print x

 Thread 2 performs

x = 100;
flag = true

« What is the expected output?



Recall Peterson’s Solution:

After Instruction Reordering
« 100 is the expected output.

« However, the operations for Thread 2 may be
reordered:

flag = true;
x = 100;
« If this occurs, the output may be 0!

« The effects of instruction reordering in Peterson’s
Solution

« This allows both processes to be in their critical
section at the same time!



Solution using Memory
Barrier

« We could add a memory barrier to the following
instructions to ensure Thread 1 outputs 100:

« Thread 1 now performs

while (!'flag)
memory barrier();
print x

 Thread 2 now performs
x = 100;

memory barrier();
flag = true



Questions?

« Concept of memory barrier



Hardware Instructions

« Special hardware instructions that allow
us to either test-and-modify the content
of a word, or two swap the contents of
two words atomically (uninterruptibly.)

 Test-and-Set instruction

« Compare-and-Swap instruction



test and set Instruction

Definition:
boolean test and set (boolean *target)
{
boolean rv = *target;
*target = true;
return rv:
}
Executed atomically

2. Returns the original value of passed
parameter

3. Set the new value of passed parameter to
true

-



Solution using test_and_set()

« Shared Boolean variable lock, initialized to false
« Solution:

while (true) {
, while (test and set(&lock))
Acquire a lock - -
; /* do nothing */

/* critical section */

lock = false; } Release the lock

/* remainder section */




compare and swap
Instruction

Definition:

int compare and swap(int *value, int expected, int
new value) {

int temp = *value;

if (*value == expected) *value = new value;

return temp;

Executed atomically
Returns the original value of passed parameter value

Set the variable value the value of the passed
parameter new_value but only if *value == expected
Is true. That is, the swap takes place only under this

condition.

W N = -



Solution using
compare and swap

« Shared integer lock initialized to O;
« Solution:

while (true) {

Acquirea{While (compare_and swap(&lock, 0, 1) != 0)

lock

; /* do nothing */

/* critical section */

lock = O0; } Release the lock

/* remainder section */



Bounded Waiting?

« Although these algorithms satisfy the
mutual-exclusion requirement, they do
not satisfy the bounded-waiting
requirement

« Why?



Bounded-Waiting Mutual

Exclusion

 Demonstrate it using with compare-and-
swap

« TwWo variables
* boolean waiting[n];
* 1nt lock,

* The elements in the waiting array are
initialized to false, and lock is initialized
to O.



Bounded-Waiting Mutual
Exclusion with compare-and-
swap

while (true) {

—— - - - e o o o — — — — — — — —— ———————————————

\ /* critical section */

key = 1;
while (waiting[i] && key == 1)

key = 13 = (i+1) %n;
com.pare__and_swap(&lock,O,1);iiWhile ((5 '= i) && 'waiting[3])

waiting[i] = false; 5= (5 +1) % n;
e e if (j == 1)

lock = 0;

_____________________________________________

/* remainder section */



Bounded Waiting

 When a process leaves its critical section, it
scans the array waiting in the cyclic ordering
i+1,i+2,..,n—1,0,..,i-—1).

It designates the first process in this
ordering that is in the entry section
(waiting[j] == true) as the next one to
enter the critical section.

* Any process waiting to enter its critical
section will thus do so within n — 1 turns.



Atomic Variables

« Typically, instructions such as compare-and-
swap are used as building blocks for other
synchronization tools.

* One tool is an atomic variable that provides
atomic (uninterruptible) updates on basic data
types such as integers and booleans.

 For example, the increment () operation on the
atomic variable sequence ensures sequence is

incremented without interruption:

increment (&sequence) ;



Solution using Atomic
Variables

 The increment () function can be implemented
as follows:

void increment (atomic int *v)

{

int temp;

do {
temp = *v;
}
while (temp !=
(compare and swap (v, temp, temp+l)) ;



Questions?

« Concept of “lock”

« Synchronization hardware
« Concept of lock
« Uniprocessor and multiprocessor system
« Memory barrier
« Special instructions

« Atomic variables



