
CISC 3320 MW3

Process Management
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

9/16/2019 1
CUNY | Brooklyn College: CISC 3320

MW3

Acknowledgement

• These slides are a revision of the slides

by the authors of the textbook

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
2

Outline

• Process Concept

• Process Scheduling

• Operations on Processes

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
3

CPU Activities

• Batch systems execute jobs

• Time-shared system has multiple user

programs and tasks

• Example: a user can run multiple programs or

multiple instances of a program on Windows or

UNIX systems

• Process management: to support these, we

need to manage and share memory and CPU

• Use job and process interchangeably

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
4

Two Concepts

• Program

• Process

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
5

Program and Executing a

Program
• A program is passive entity stored on

disk in the form of executable file

• An operating system provides means to

execute a program

• e.g., execution of program started via GUI

mouse clicks, command line entry of its

name

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
6

Process

• A process is a program in execution, as
such, a program is a passive entity while
a process is an active one

• A program becomes a process when

executable file loaded into memory

• One program can be several processes

• Consider multiple users executing the same

program

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
7

Process in Memory

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
8

Process: Memory Layout

• A process consists of multiple parts, generally,

• The program code, also called text section

• Current activity including program counter,
processor registers

• Stack containing temporary data

• Function parameters, return addresses, local
variables

• Data section containing global variables

• Heap containing memory dynamically allocated
during run time

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
9

Memory Layout of a C

Program

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
10

Questions?

• Concept of process

• Parts of a process

• Memory layout of a process

• Demo program

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
11

Process State

• As a process executes, it changes state,

generally,

• New: The process is being created

• Running: Instructions are being executed

• Waiting: The process is waiting for some event

to occur

• Ready: The process is waiting to be assigned to

a processor

• Terminated: The process has finished execution

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
12

Transition of Process States

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
13

Process State: Example in

Linux (ps)
cisc3320@debian:~$ ps aux | head

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 1 2.6 0.5 9524 6132 ? Ss 17:29 0:00 /sbin/init

root 2 0.0 0.0 0 0 ? S 17:29 0:00 [kthreadd]

root 3 0.0 0.0 0 0 ? S 17:29 0:00 [ksoftirqd/0]

root 4 0.0 0.0 0 0 ? S 17:29 0:00 [kworker/0:0]

root 5 0.0 0.0 0 0 ? S< 17:29 0:00 [kworker/0:0H]

root 6 0.0 0.0 0 0 ? S 17:29 0:00 [kworker/u2:0]

root 7 0.2 0.0 0 0 ? S 17:29 0:00 [rcu_sched]

root 8 0.0 0.0 0 0 ? S 17:29 0:00 [rcu_bh]

root 9 0.0 0.0 0 0 ? S 17:29 0:00 [migration/0]

cisc3320@debian:~$

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
14

Process State: Example in

Linux (man ps)
PROCESS STATE CODES

Here are the different values that the s, stat and state output specifiers
(header "STAT" or "S") will display to describe the state of a process:

D uninterruptible sleep (usually IO)

R running or runnable (on run queue)

S interruptible sleep (waiting for an event to complete)

T stopped by job control signal

t stopped by debugger during the tracing

W paging (not valid since the 2.6.xx kernel)

X dead (should never be seen)

Z defunct ("zombie") process, terminated but not reaped by its
parent

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
15

Questions?

• Process state

• Transition of process state

• Process state in Linux

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
16

Process Control Block (PCB)

Information associated with each process (also called task
control block)

• Process state – running, waiting, etc

• Program counter – location of instruction to next execute

• CPU registers – contents of all process-centric registers

• CPU scheduling information- priorities, scheduling queue
pointers

• Memory-management information – memory allocated to
the process

• Accounting information – CPU used, clock time elapsed
since start, time limits

• I/O status information – I/O devices allocated to process,
list of open files

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
17

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
18

Threads

• So far, a process has a single thread of
execution

• Consider having multiple program counters
per process

• Multiple locations can execute at once

• Multiple threads of control -> threads

• Must then have storage for thread details,
multiple program counters in PCB

• Explore in detail next week

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
19

Questions?

• Data structure for managing and

representing process

• Concepts of thread of control/execution

and thread.

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
20

Process Representation in

Linux
• Represented by the C structure

task_struct

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
21

pid t_pid; /* process identifier */

long state; /* state of the process */

unsigned int time_slice /* scheduling information */

struct task_struct *parent;/* this process’s parent */

struct list_head children; /* this process’s children */

struct files_struct *files;/* list of open files */

struct mm_struct *mm; /* address space of this process

*/

https://github.com/torvalds/linux/blob/master/include/linux/sched.h#L592
https://github.com/torvalds/linux/blob/master/include/linux/sched.h#L592

Process Representation in

Linux: Task List

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
22

pid t_pid; /* process identifier */

long state; /* state of the process */

unsigned int time_slice /* scheduling information */

struct task_struct *parent;/* this process’s parent */

struct list_head children; /* this process’s children */

struct files_struct *files;/* list of open files */

struct mm_struct *mm; /* address space of this process

*/

Questions?

• Process representation in Linux?

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
23

Process Scheduling

• Maximize CPU use, quickly switch processes
onto CPU core

• Process scheduler selects among available
processes for next execution on CPU core

• Maintains scheduling queues of processes

• Ready queue – set of all processes residing in
main memory, ready and waiting to execute

• Wait queues – set of processes waiting for an
event (i.e. I/O)

• Processes migrate among the various queues

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
24

Ready and Wait Queues

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
25

Representation of Process

Scheduling

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
26

CPU Switch From Process to

Process

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
27

Context Switch

• A context switch occurs when the CPU

switches from one process to another.

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
28

Context Switch: What must

Happen?
• When CPU switches to another process, the

system must save the state of the old process
and load the saved state for the new process.

• Context of a process represented in the PCB

• Context-switch time is overhead; the system
does no useful work while switching

• The more complex the OS and the PCB ➔ the longer
the context switch

• Time dependent on hardware support

• Some hardware provides multiple sets of registers per
CPU ➔ multiple contexts loaded at once

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
29

Questions?

• Concept of process scheduling

• Concept of context switch

• When must happen during a context

switch?

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
30

Operations on Processes

• System must provide mechanisms for:

• process creation

• process termination

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
31

Process Creation

• Parent process create children processes, which, in turn
create other processes, forming a tree of processes

• Generally, process identified and managed via a process
identifier (pid)

• Resource sharing options

• Parent and children share all resources

• Children share subset of parent’s resources

• Parent and child share no resources

• Execution options

• Parent and children execute concurrently

• Parent waits until children terminate

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
32

A Tree of Processes in Linux

(Examples: pstree or ps –

ajxf)

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
33

Process Creation: Design

Consideration
• Physical and logical resources

• CPU time, memory, files, I/O devices

• Child obtains from the OS

• Child is constrained to a subset of the parent process’s
resources

• Program data

• Parent process may pass initialization data to child
process

• Address space

• Child duplicate of parent

• Child has a program loaded into it

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
34

Process Creation in UNIX

• fork() system call creates new process

• exec() system call used after a fork()

to replace the process’ memory space

with a new program

• Parent process calls wait() for the child

to terminate

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
35

Example Application in Linux

• See the example program

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
36

Example Application in

Windows
• See the example program

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
37

Questions?

• Process creation

• Using system calls to create processes

• Demo programs (Linux and Windows)

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
38

Process Termination

• Processes executes last statement

(normal process termination)

• Parent terminates child process (abort

the child process)

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
39

Normal Process Termination

• Process executes last statement and

then asks the operating system to

delete it

• e.g., in UNIX, using the exit() system call.

• Returns status data from child to parent

(e.g., via wait() in UNIX)

• Process’ resources are deallocated by

operating system

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
40

Abort Child Process

• Parent may terminate the execution
of children processes.

• e.g., using the abort() system call

• Some reasons for doing so:

• Child has exceeded allocated resources

• Task assigned to child is no longer required

• The parent is exiting and the operating systems
does not allow a child to continue if its parent
terminates

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
41

Terminate Children or Wait

for Children?
• Allow child process to exist without the

existence of the parent?

• Allow parent to wait for child to

complete?

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
42

Terminate All Children

• Some operating systems do not allow
child to exists if its parent has
terminated.

• If a process terminates, then all its
children must also be terminated.

• cascading termination. All children,
grandchildren, etc. are terminated.

• The termination is initiated by the operating
system.

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
43

Wait for Children

• The parent process may wait for

termination of a child process

• e.g., in UNIX, by using the wait()system

call. The call returns status information and

the pid of the terminated process

pid = wait(&status);

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
44

Zombie Process

• A process that has terminated, but
whose parent has not yet called wait(), is
known as a zombie process.

• All processes transition to this state
when they terminate, but generally they
exist as zombies only briefly.

• Once the parent calls wait(), the process
identifier of the zombie process and its
entry in the process table are released.

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
45

Orphan Process

• A parent did not invoke wait() and

instead terminated, thereby leaving its

child processes as orphans.

• In UNIX, assign new parent

(initd/systemd)

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
46

Terminating Processes: Linux

Examples
• Example programs

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
47

Questions?

• Process termination?

• Process termination in UNIX?

• Zombie?

• Orphan?

• Demo programs

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
48

