CISC 3320
Main Memory:

Segmentation

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Acknowledgement

» These slides are a revision of the slides
provided by the authors of the following
textbook

« Andrew S. Tanenbaum and Herbert Bos.
2014. Modern Operating Systems (4th ed.).
Prentice Hall Press, Upper Saddle River, NJ,
USA.

One Logical Address Space?

« Thus far, we assume we have only one
logical address space

More Logical Address Spaces?

« Examine the following scenario: a compiler
generates tables when compiling a program

1. The source text being saved for the printed listing

2. The symbol table, names and attributes of
variables.

3. The table containing integer and floating-point
constants used.

4. The parse tree, syntactic analysis of the program.
5. The stack used for procedure calls within compiler.

Virtual address space

Call stack +
]f Free
Add '
allocated {o the Space currently being
parse tree Parse tree used by the parse tree

Constant table f

Source text *

bumped into the

Symbol table
source text table

1 Symbol table has

Figure 3-30. In a one-dimensional address space with growing tables,
one table may bump into another [In Tanenbaum and Bos (2014)]

11/6/2019 CUNY | Brooklyn College

Segmentation

* Provide to the CPU with many completely
independent logical address spaces, each
called a segment

20K

16K |~ 16K
12K |- 12K 12K |- 12K
Symbol
table
8K |- 8K | 8K |~ Parse 8K |~
tree
Source Call
text stack
4K - 4K |- 4K | 4K
Constants
0K 0K OK 0K 0K
Segment Segment Segment Segment Segment
0 1 2 3 4

Figure 3-31. A segmented memory allows each table to grow or shrink
independently of the other tables [In Tanenbaum and Bos (2014)]

11/6/2019 CUNY | Brooklyn College

Segmentation vs. Paging

Consideration Paging Segmentation

Need the programmer be aware No Yes
that this technique is being used?

How many linear address 1 Many
spaces are there?

Can the total address space Yes Yes
exceed the size of physical
memory?

Can procedures and data be MNo Yes
distinguished and separately
protected?

Can tables whose size fluctuates No Yes
be accommodated easily?

Is sharing of procedures No Yes
between users facilitated?

Why was this technique To get a large To allow programs
invented? linear address and data to be broken
space without up into logically
having to buy independent address
more physical spaces and to aid
memory sharing and
protection

Figure 3-32. in In Tanenbaum and Bos (2014)
11/6/2019 CUNY | Brooklyn College

Pure Segmentation and
External Fragmentation

7
Segment 4 Segment 4 {BH‘}/ A (3K)
(VK) (7K) Segment 5 Segment 5
(4K) (4K) /
o
{4KJ///
Segment 3 Segment 3 Segment 3 s Se ment B
(8K) (8K) (8K) Segment 6 i
(4K)
Segment 6
Segment 2 Segment 2 Segment 2 Segment 2 (4K)
(5K) (5K) (5K) (5K) S 49
egmen
3K 3K 3K) 5K
Segment 1 /() (M // (5K)
(8K) Segment 7 Segment 7 Segment 7 Segment 7
(5K) (5K) (5K) (5K)
Segment 0 Segment 0 Segment 0 Segment 0 Segment O
(4K) (4K) (4K) (4K) (4K)
(a) (b) (c) (d) (e)

Figure 3-33. in In Tanenbaum and Bos (2014): (a)-(d) showing occurrences of external
fragmentation; (e) showing memory compaction to remove external fragmentation

11/6/2019 CUNY | Brooklyn College 9

Segmentation with Paging

« Take advantage of multiple logical
address spaces

« Eliminate external fragmentation

Segmentation with Paging:
MULTICS

33}
(49

33}
(49

—~——36 bits ——

1 1 Page 2 entry

T T Page 1 entry
Segment 6 descriptor Page 0 entry
Segment 5 descriptor Page table for segment 3
Segment 4 descriptor
Segment 3 descriptor 1 1
Segment 2 descriptor T T
Segment 1 descriptor Page 2 entry
Segment O descriptor Page 1 entry

Descriptor segment Page 0 entry

Page table for segment 1

Figure 3-34 The descriptor segment pointed to the page tables.
[In Tanenbaum and Bos (2014)]

MULTICS Segment Descriptor

18 9 111 3 3
Main memory address Segment length
of the page table (in pages)
) | ! - i .l.

Page size:
0 = 1024 words
1 =64 words
0 =segment is paged __|

1 = segment is not paged

Miscellaneous hits

Protection bits

Figure 3-34. A segment descriptor. The numbers are the field lengths. [In
Tanenbaum and Bos (2014)]

MULTICS Logical Address

Address within
the segment

A

Segment number Page Offset within
number the page

Figure 3-35. A 34-bit MULTICS logical address [In Tanenbaum and Bos (2014)]

MULTICS Logical to Physical
Address Translation

MULTICS virtual address

Segment number Page Offset
number
Word
Descriptor Page frame \ ‘
Segment “ B Ci}ﬂset
number Descriptor number Page Page
segment table

Figure 3-36. Conversion of a two-part MULTICS address into a
physical address. [In Tanenbaum and Bos (2014)]

MULTICS TLB

Gorrflipéalicrlisun I::IRJ;‘
i A . used?
Segment Virtual Page
number page frame Protection Age l
4 1 7 Read/write 13 | 1
6 0 2 Read only 10 | 1
12 3 1 Read/write 2 1
0
2 1 0 Execute only 7 1
2 2 12 Execute only 9 1
— —1

Figure 3-37. A simplified version of the MULTICS TLB. The existence of two page sizes
made the actual TLB more complex. [In Tanenbaum and Bos (2014)]

Segmentation with Paging:
X86

« X86 supports segmentation and has two
tables

» Local Descriptor Table (LDT) and Global
Descriptor Table (GDT)

« LDT describes segment local to each program, and
GDT describes system segments, such as, those
for the operating system itself

« To access a segment, an x86 program loads a
selector for that segment to one of the CPU’s 6
segment registers

* CS holds code segment, DS data segment

An x86 Segment Selector

Bits 13 1 2

Index

¥

0=GDTH =LDT Privilege level (0-3)

Figure 3-38. An x86 selector. [In Tanenbaum and Bos (2014)]

An x86 Code Segment
Descriptor

0: 16-Bit segment | [0: Segment is absent from memory
1: 32-Bit segment | | 1: Segment is present in memory

- Privilege level (0-3)
0: Liis in bytes | 0: Systfaml
1: Liis in pages 7 | 1: Application

+7 Segment type and protection

'1[

Base 24-31 a|plo ? 1Lér_q“g plopL[s| Type Base 16-23 4
4
Base 0-15 Limit 0-15 0
B . _ Relative
) 32 Bits ~ address

Figure 3-39. x86 code segment descriptor. Data segments
differ slightly. [In Tanenbaum and Bos (2014)]

Translate Logical Address to
Physical Address

» Essentially, two steps

1. Translate (selector, offset) to linear
address

2. Translate linear address to physical
address

Translate Logical Address to
Linear Address

Selector Offset
Descriptor l
Base address »@
IR Limit
Other fields

'1|'
32-Bit linear address

Figure 3-40. Conversion of a (selector, offset) pair to a linear
address. [In Tanenbaum and Bos (2014)]

Translate Linear Address to
Physical Address

Linear address

Bits 10 10 12
Dir Page Offset
(a)
Page directory Page table Page frame
t:I:t 3:_J: I'L t'_L Word EL J\
selected —_
1024
Entries T
; T Offset
Dir
Page
| / l /
Directory eﬁlry Page table:
points to entry points
page table to word
(b)

Figure 3-41. Mapping of a linear address onto a physical address
[In Tanenbaum and Bos (2014)]

Questions?

« Concept of segmentation

« Examples of segmentation
« MULTICS
« Xx86 (a.k.a., x86-32)

« How does x86-64 deal with segmentation
(at all)?

