
CISC 3320

Main Memory: Paging
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

11/6/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides

provided by the authors of the textbook

via the publisher of the textbook

11/6/2019 CUNY | Brooklyn College 2

Outline

• Paging

• Structure of the Page Table

• Swapping

• Example: The Intel 32 and 64-bit

Architectures

• Example: ARMv8 Architecture

11/6/2019 CUNY | Brooklyn College 3

Noncontiguous Allocation:

Paging
• A memory allocation scheme where

physical address space of a process can

be noncontiguous

11/6/2019 CUNY | Brooklyn College 4

Continuous vs. Noncontinuous
allocation of physical memory

A Process

The
Process

The
Process

The
Process

Physical
Memory

Physical
Memory

Memory allocation
at execution time

Frames and Pages

• Divide physical addresses into fixed-sized

blocks called frames

• Size is power of 2, typically between 512

bytes and 16 Mbytes

• Divide logical addresses into blocks of

same size called pages

11/6/2019 CUNY | Brooklyn College 5

Paging: Basic Scheme

• OS keeps track of all free frames

• Process is allocated physical memory

whenever there is available physical

memory

11/6/2019 CUNY | Brooklyn College 6

Page Table

• To run a program of size N pages, need

to find N free frames and load program

• Map N pages to N frames

• Need to set up a page table to translate

logical to physical addresses for a

process

11/6/2019 CUNY | Brooklyn College 7

Page Number Frame Number

1 3

…N pages N frames

Example: Basic Paging

Scheme
• Virtual/logical address

• Per process

• 16-bit address

• Address space:

• 0 ~ (216 – 1) = 64K - 1

• Divided into pages, each 4KB

• 32 KB physical memory

• Divide into frames, each 4KB

• 64 KB logical address space:
16 x 4 = 64, so 16 pages

• 32 KB physical memory: 8 x 4
= 32, so 8 frames

11/6/2019 CUNY | Brooklyn College 8

• [Figure 3-9 in Tanenbaum & Bos, 2014]

Page number (p) Frame Number (f)

11/6/2019 CUNY | Brooklyn College 9

• [Figure 3-9 in Tanenbaum & Bos, 2014]

Example: Allocating Memory

Page number (p) Frame Number (f)

3 (0011)2 0 (000)2

1 (0001)2 1 (001)2

0 (0000)2 2 (010)2

5 (0101)2 3 (011)2

4 (0100)2 4 (100)2

9 (1001)2 5 (101)2

2 (0010)2 6 (110)2

11 (1011)2 7 (111)2

11/6/2019 CUNY | Brooklyn College 10

• [Figure 3-9 in Tanenbaum & Bos, 2014]

Example: Allocating Memory

• MMU maintains a map per process

• Page size: 4K

• What if

• MOV REG, (8203)

• 8203 is a logical address, passed to
MMU (8K = 8192)

• determines that 8203 is in page 2 in
logical address space

• determines that the page is mapped to
frame 6 in physical memory

• Maps the logical address to physical
address

• 8203 / 4K = 2 (table lookup → 6)

• 8203 % 4K + 6 * 4K = 24587

11/6/2019 CUNY | Brooklyn College 11

• [Figure 3-9 in Tanenbaum & Bos, 2014]

Example: Address Binding

Questions?

• Paging

• How does it work?

• Avoids external fragmentation

• Avoids problem of varying sized memory

chunks

• Still have Internal fragmentation (some

memory may be unused in a frame)

11/6/2019 CUNY | Brooklyn College 12

Paging Hardware

11/6/2019 CUNY | Brooklyn College 13

MMU

Paging Hardware: Example

• Page & frame sizes: 4K, so d is 12 bits

• Logical address space: 64K

• 64K / 4K = 16, so p is 4 bits

• p d: 4 + 12 = 16 bits

• Physical address space: 32K

• 32K / 4K = 8, so f is 3 bits

• f d: 3 + 12 = 15 bits

• Then, consider MOV REG, (8203)

• 820310 = 0010 0000 0000 1011

11/6/2019 CUNY | Brooklyn College 14

Paging Hardware: Example:

Using p to Look up f
Page number (p) Frame Number (f)

3 (0011)2 0 (000)2

1 (0001)2 1 (001)2

0 (0000)2 2 (010)2

5 (0101)2 3 (011)2

4 (0100)2 4 (100)2

9 (1001)2 5 (101)2

2 (0010)2 6 (110)2

11 (1011)2 7 (111)2

11/6/2019 CUNY | Brooklyn College 15

• [Figure 3-9 in Tanenbaum & Bos, 2014]

820310 = 0010 0000 0000 1011
?

Paging Hardware: Example:

Using p to Look up f
Page number (p) Frame Number (f)

3 (0011)2 0 (000)2

1 (0001)2 1 (001)2

0 (0000)2 2 (010)2

5 (0101)2 3 (011)2

4 (0100)2 4 (100)2

9 (1001)2 5 (101)2

2 (0010)2 6 (110)2

11 (1011)2 7 (111)2

11/6/2019 CUNY | Brooklyn College 16

• [Figure 3-9 in Tanenbaum & Bos, 2014]

820310 = 0010 0000 0000 1011
110

Paging Hardware: Example: f

d = ?
820310 = 0010 0000 0000 1011

110

f d = 110 0000 0000 1011 = ?

11/6/2019 CUNY | Brooklyn College 17

More Paging Examples: Page

Table?

11/6/2019 CUNY | Brooklyn College 18

More Paging Examples: Page

Table

11/6/2019 CUNY | Brooklyn College 19

More Paging Examples: Page

Table?
• Logical address: n = 2 and m = 4.

Using a page size of 4 bytes and a

physical memory of 32 bytes (8 pages)

11/6/2019 CUNY | Brooklyn College 20

11/6/2019 CUNY | Brooklyn College 21

11/6/2019 CUNY | Brooklyn College 22

Paging: Fragmentation

• Avoids external fragmentation

• Still has internal fragmentation

11/6/2019 CUNY | Brooklyn College 23

Paging: Internal

Fragmentation: Example
• Page size = 2,048 bytes

• Process size = 72,766 bytes

• i.e., 35 pages + 1,086 bytes

• Internal fragmentation of 2,048 - 1,086

= 962 bytes

11/6/2019 CUNY | Brooklyn College 24

Paging: Calculating Internal

Fragmentation
• Page size = 2,048 bytes

• Best case: no internal fragmentation

• Worst case fragmentation = 1 frame – 1

byte

• On average fragmentation = 1 / 2 frame

size

11/6/2019 CUNY | Brooklyn College 25

Internal Fragmentation and

Frame Size
• So small frame sizes desirable?

• But each page table entry takes memory to
track the mapping from a page to a frame

• Page sizes growing over time

• Some operating systems support multiple
page sizes

• Solaris supports two page sizes: 8 KB and 4 MB

• Windows: 4KB and 2MB

• Linux: 4KB and an architecture-dependent larger
page size

11/6/2019 CUNY | Brooklyn College 26

Tracking Frames

• Frame table

• One entry for each physical page frame

• Indicate whether the frame is free or

allocated and, if it is allocated, to which page

of which process (or processes)

11/6/2019 CUNY | Brooklyn College 27

Mapping Frames

11/6/2019 CUNY | Brooklyn College 28

Before allocation After allocation

Questions?

• Paging and examples?

• Page and frame

• Page table

• Internal fragmentation

• Allocating and freeing frames

11/6/2019 CUNY | Brooklyn College 29

OS Page Table and MMU Page

Table
• Operating systems maintain a copy of the

page table for each process, just as it

maintains a copy of the instruction counter

and register contents.

• The CPU dispatcher defines the hardware

(MMU) page table when a process is to be

allocated the CPU using the OS page table.

• Paging therefore increases the context-

switch time.

11/6/2019 CUNY | Brooklyn College 30

Page Table and Memory

Access
• Hardware/MMU Page table is kept in

main memory

• Page-table base register (PTBR) points to the

page table

• Page-table length register (PTLR) indicates

size of the page table

11/6/2019 CUNY | Brooklyn College 31

Paging Table in Main Memory

11/6/2019 CUNY | Brooklyn College 32

MMU

Page-table base register (PTBR)

Page-table length register (PTLR)
In main memory

Page Table and Memory

Access
• In this scheme every data/instruction

access requires two memory accesses

• One for the page table and one for the data /

instruction

11/6/2019 CUNY | Brooklyn College 33

Two Memory Accesses

11/6/2019 CUNY | Brooklyn College 34

MMU

Page-table base register (PTBR)

Page-table length register (PTLR)
In main memory

1

2

Recap: Memory Access

Latency
• Registers are fast while memory slow

• Register access is done in one CPU clock (or less)

• Main memory can take many cycles, causing a
stall (memory stall)

• e.g., mov -0x8(%rbp),%rax

• Naively implementing paging results twice
memory access latencies (~50% slow down)

• Tackling memory stall:

• Adding cache, fast memory sits between main
memory and registers

11/6/2019 CUNY | Brooklyn College 35

Introducing TLB

• The two-memory-access problem can be

solved by the use of a special fast-lookup

hardware cache called translation look-

aside buffers (TLBs) (constructed as

associative memory).

11/6/2019 CUNY | Brooklyn College 36

Translation Look-Aside Buffer

• TLBs typically small (64 to 1,024 entries)

• On a TLB miss, value is loaded into the TLB for
faster access next time

• Replacement policies must be considered

• Some entries can be wired down for permanent fast
access

• Some TLBs store address-space identifiers
(ASIDs) in each TLB entry

• Uniquely identifies each process to provide address-
space protection for that process

• Otherwise need to flush at every context switch

11/6/2019 CUNY | Brooklyn College 37

Hardware Supporting Parallel

Search
• Associative memory – parallel search

• Address translation (p, d)

• If p is in associative register, get frame # out

• Otherwise get frame # from page table in

memory

11/6/2019 CUNY | Brooklyn College 38

Paging Hardware With TLB

11/6/2019 CUNY | Brooklyn College 39

TLB Hit

11/6/2019 CUNY | Brooklyn College 40

1

2

TLB Miss

11/6/2019 CUNY | Brooklyn College 41

1

2

3

Hit Ratio and Effective Access

Time
• Hit ratio

• percentage of times that a page number is found
in the TLB

• An 80% hit ratio means that we find the desired
page number in the TLB 80% of the time.

• Miss ratio

• 1 – hit ratio

• The statistical or real measure of how long it
takes the CPU to read or write to memory

• It depends on hit ratio

11/6/2019 CUNY | Brooklyn College 42

Effective Access Time:

Example
• Suppose that 10 nanoseconds to access main memory, and

ignore TLB access time

• If a TLB hit, i.e., we find the desired page in TLB then a
mapped-memory access take 10 ns

• Otherwise we need two memory access so it is 20 ns

• One for page table, one for mapped-memory access

• Ignore TLB access time

• Effective Access Time (EAT)

EAT = 0.80 x 10 + 0.20 x 20 = 12 nanoseconds

implying 20% slowdown in access time

• Consider a more realistic hit ratio of 99%,

EAT = 0.99 x 10 + 0.01 x 20 = 10.1ns

implying only 1% slowdown in access time.
11/6/2019 CUNY | Brooklyn College 43

Questions?

• How to speed up paging?

• What is TLB, TLB hit, TLB miss,

associative memory?

• How does TLB make paging feasible? But

depends on what factors?

11/6/2019 CUNY | Brooklyn College 44

Memory Protection

• Memory protection implemented by associating
protection bit with each frame to indicate if read-
only or read-write access is allowed

• Can also add more bits to indicate page execute-only,
and so on

• Valid-invalid bit attached to each entry in the page
table:

• “valid” indicates that the associated page is in the
process’ logical address space, and is thus a legal page

• “invalid” indicates that the page is not in the process’
logical address space

• Use page-table length register (PTLR)

• Any violations result in a trap to the kernel

11/6/2019 CUNY | Brooklyn College 45

11/6/2019 CUNY | Brooklyn College 46

Questions?

• Memory protection?

11/6/2019 CUNY | Brooklyn College 47

Shared Pages

• Shared code, an advantage of paging

• One copy of read-only (reentrant) code shared among
processes (i.e., text editors, compilers, window systems)

• Similar to multiple threads sharing the same process
space

• Also useful for interprocess communication if sharing of
read-write pages is allowed

• Private code and data

• Each process keeps a separate copy of the code and data

• The pages for the private code and data can appear
anywhere in the logical address space

11/6/2019 CUNY | Brooklyn College 48

11/6/2019 CUNY | Brooklyn College 49

Questions

• Shared pages?

11/6/2019 CUNY | Brooklyn College 50

