CISC 3320
Main Memory: Overview

and Essential Scheme

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Acknowledgement

* These slides are a revision of the slides
provided by the authors of the textbook
via the publisher of the textbook

Outline

« Recap and background
» Contiguous Memory Allocation

* Paging
« Structure of the Page Table
« Swapping

« Example: The Intel 32 and 64-bit
Architectures

 Example: ARMv8 Architecture

Recap: An Organization of a
Computer System

 Program must be brought (from disk) into
memory and placed within a process for it to be

run

 Main memory and registers are only storage
CPU can access directly
mouse keyboard printer monitor
disks é = i
S S A _

N |/

2Lt USB controller clplilzs
controller adapter

CPU

memory

I — instruction execution —»
_ o Cjeie instructions
thread of execution | g and
«— data movement —»
data
CPU {(*N)
5]]
= a = DMA
2 =] 3
c ¢V =
& A memory

« Memory consists of a large array
of bytes, each with its own —
address.

CUNY | Brooklyn College 5

11/6/2019

I — instruction execution —»
_ o Cjeie instructions
thread of execution | g and
«— data movement —»
data
CPU {(*N)
5]]
= a = DMA
2 =] 3
c ¢V =
& A memory

* At an address, the memory
contains either an instruction or—
data

CUNY | Brooklyn College 6

11/6/2019

I — instruction execution —»
_ o Cjeie instructions
thread of execution | g and
«— data movement —»
data
CPU {(*N)
5]]_ J
= a = DMA
2 =] 3
c ¢V =
& A memory

!

Machine instructions that take
memory addresses as arguments, «~—
but none that take disk addresses

CUNY | Brooklyn College 7

11/6/2019

Recap: Addressing Memory

« Memory unit only sees a stream of:
* (when reading) address + read request, or

 (when writing) address + data + write
request

Recap: Key Takeaway

« Memory unit only sees a stream of:
 (when reading) address + read request, or

« (when writing) address + data + write request

« But multiple processes are running and
accessing the memory.

« How do we allocate memory to processes?

« How do we ensure correct operation?

 Problem to be solved

« Address binding and memory protection

The Address Binding Problem

s

ints=0,a[3]={1, 2, 3}

int main() {
for (int i=0; i<3; i++) { Binary
s+=a[il; executable file
} on disk

printf("%d\n", s);
}

11/6/2019 CUNY | Brooklyn College

| > Memory

At what address?

10

source
program

assembler time

compiler or } compile

A user program
goes through -

other
object

multiple step of modes
processing and i
transformation.

load . load
module time
system
library
loader
dynamicall)
loaded
system L 4
library in-memor
= y .
dynamic binary ﬁ)r;eg?:honn
linking memory time)
image
11/6/2019 CUNY | Brooklyn College S 11

other
object
modules

source
program

compiler or
assembler

object
module

system
library

dynamicall
loaded
system
library

dynamic
linking

11/6/2019

linkage
editor

load
module

loader

Y

in-memory
binary
memory
image

compile
time

load
time

execution

time (run

time)

UNY | Brooklyn College

Address
binding

12

Address Representation and
Binding

« Addresses are represented in different ways at
different steps

1. Source code addresses usually symbolic
* i.e., gpa = grade_points/credits; print_gpa(sid, gpa);

2. Compiled code addresses bind to relocatable
addresses

« i.e. “14 bytes from beginning of this module”

3. Linker or loader will bind relocatable addresses to
absolute addresses

. i.e. 74014
4. Each binding maps one address space to another

Address Binding: Compilation

Time

« If memory location known a priori,
absolute code can be generated

« e.g., 1st Process loaded into address 0000 (or
other fixed address)

« Inconvenient to have first user process
physical address always at 0000

« Must recompile code if starting location
changes

Address Binding: Load Time

 Must generate relocatable code if memory location is
not known at compile time

« i.e. gpa is at “14 bytes from beginning of this module”
(offset).

« The address of the beginning of “this module” (starting
address or base address) is determined by the loader

- If the base address changes, we need only reload the
user code to incorporate this changed value.

« Address = Start Address + Offset

- e.g.,
- base address 1000 + offset 14 = 1014
- base address 9000 + offset 14 = 9014

Address Binding: Execution

Time

« Binding delayed until run time if the
process can be moved during its

execution from one memory segment to
another

* Most operating systems use this method
* But how?

 Need hardware support for address maps

« Most of our discussion is to explain how

Questions?

* Binding instruction and data to memory
addresses

 What? (Meaning)?
« When?

 Have we discussed “how”, in particular,
address binding at execution time?

CPU and MMU

» To support execution time address
binding
 Make a distinction between logical address
and physical address

» Introduce a hardware component: MMU

logical physical
address address

physical
MMU memory

Y

CPU

\ 4

Logical vs. Physical Address
Space

« Logical address

« generated by the CPU; also referred to as virtual
address

« Physical address
- address seen by the memory management unit (MMU)

» Logical address space

« the set of all logical addresses generated by a
program

» Physical address space

« the set of all physical addresses generated by a
program

Execution-Time Address
Binding
« Logical and physical addresses are the same in

compile-time and load-time address-binding
schemes

« logical (virtual) and physical addresses differ in
execution-time address-binding scheme

* A logical address space is bound to a separate
physical address space at execution time

 How this execution-time address binding takes
spaces is central to memory management

Execution-Time Address
Binding via MMU

« MMU is a hardware device that at run time maps virtual to
physical address (address binding)

« The user program deals with logical addresses; it never
sees the real physical addresses

« Execution-time binding occurs when reference is made to
location in memory

* Logical addresses are bound to physical addresses

logical physical
address address

physical
MMU memory

Y

CPU

\/

Questions?

« Concept of logical and physical addresses
and address spaces

» Concept of address binding

« Concept of exestuation-time address
ninding and MMU

 How do we bind logical address to
bhysical address?

« Many methods were developed

Base-Limit Register Scheme

« Consider a relocation register or base
register scheme

 The base register is also called the relocation
register, or vice versa

* The value in the relocation register is added
to every address generated by a user
process at the time it is sent to memory

 relocation register + offset (in this case, logical
address) > physical address

CPU

relocation

11/6/2019

register
14000
logical physical
address address
=
346 14346
MMU

CUNY | Brooklyn College

>

memory

16384

CMF

4

Base reqgister
or
Relocation register

Y

JMP 28

ADD

MOV

JMP 24

« Two processes, each
32764 has its own logical
address spaces
starting at O, which are
mapped to separate
physical address
spaces starting at the
addresses in their
respective relocation
(or base registers)

20 Base register = Relocation

16 register

12 « Dynamic relocation via base and
8 limit registers [Figure 3-3 in
4 Tanenbaum & Bos, 2014]
0

Questions?

» Relocation register scheme
« What is it?

 How do we bind logical address to physical
address?

 What does the operating system need to do
during a context switch?

Memory Allocation

« The main memory must accommodate
both the operating system and the
various user processes.

 We ought to allocate main memory in the
most efficient way possible.

« Example:

« contiguous memory allocation, an early
method

Continuous Memory

Allocation

« Each process is contained in a single
section of memory that is contiguous to
the section containing the next process.

« Memory protection?
 Limit register method

« Memory allocation?

« Variable partition method

Relocation and Limit

Registers

CPU

logical
address

limit
register

11/6/2019

\
. trap: addressing error

yes

relocation
register

physical
address
+

v

no

|

MMU

CUNY | Brooklyn College

P

memory

Memory Allocation

« Assign processes to variably sized partitions
in memory, where each partition may
contain exactly one process

 Partition can begin at any address
* A variable partition scheme

e Continuous allocation

« A process is given a partition of physical
addresses

« Physical address space of a process is then
continuously allocated

Variable Partition

« Operating system maintains information about:
 allocated partitions

. free partitions (hole)

« Variable-partition sizes for efficiency (sized to a
given process’ needs)

« When a process arrives, it is allocated memory
from a hole large enough to accommodate it

« Process exiting frees its partition, adjacent free
partitions combined

Memory Holes

* block of available memory

* holes of various size are scattered
throughout memory

high
memory

low
memory

OS

process 5

05

process 8

process 5

OS

OS

process 2

process 5

process 9

11/6/2019

process 2

process 9

process 2

CUNY | Brooklyn College

process 2

32

Dynamic Storage-Allocation
Problem

« How to satisfy a request of size n from a list of
free holes?

« First-fit: Allocate the first hole that is big enough

- Best-fit: Allocate the smallest hole that is big enough;
must search entire list, unless ordered by size

 Produces the smallest leftover hole

« Worst-fit: Allocate the largest hole; must also search
entire list

* Produces the largest leftover hole

 First-fit and best-fit better than worst-fit in
terms of speed and storage utilization

Fragmentation

« External Fragmentation

« Total memory space exists to satisfy a request, but it
Is not contiguous

« Internal Fragmentation

« Allocated memory may be slightly larger than
requested memory

« This size difference is memory internal to a partition,
but not being used

 First fit analysis reveals that given N blocks
allocated, another 0.5 N blocks lost to
fragmentation

 1/3 may be unusable -> 50-percent rule

External Fragmentation

OS

X

pProcess 9 " process 10

X

process 2

11/6/2019 CUNY | Brooklyn College

Internal Fragmentation

process 10 OS OS

-\
_—
\\
\.

T~ process 10
<= - Infernal

For efficient Fragmen-
tracking of holes tation
and partitions, p rocess 9 p roOCess 9 (eg., less
use blocks of than
memory, e.g., 4KB)
4KB, then ...

process 2 process 2

11/6/2019 CUNY | Brooklyn College 36

Combating Fragmentation

* Reduce external fragmentation by
compaction

« Shuffle memory contents to place all free
memory together in one large block

« Compaction is possible only if relocation is
dynamic, and is done at execution time

« I/O problem
« Latch job in memory while it is involved in I/O

« Do I/O only into OS buffers

Degree of Multiprogramming

* Degree of multiprogramming limited by
number of partitions :

load store
20% 10 wat o
= 100 |
=
8 . _
S go |- 50% I/O wait wait for 1/0 /O burst
O
-E, store increment
. index CPU burst
g 60 80% /O wait write to file
T
% 40 wait for /0 /O burst
=3
E 20 load store
O add store CPU burst
read from file

0 1 2 3 4 5 6 7 8 9 10 VO burst
Degree of multiprogramming
11/6/2019 CUNY | Brooklyn College : 38

Questions

» Continuous Memory Allocation
« Memory protection mechanism and hardware

« Memory allocation

« Variable partition allocation
» Degree of multiprogramming
« Memory hole
« Memory fragmentation

« Compaction

 Any other methods to solve fragmentation
problem?

