
CISC 3320

Main Memory: Overview

and Essential Scheme
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

11/6/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides

provided by the authors of the textbook

via the publisher of the textbook

11/6/2019 CUNY | Brooklyn College 2

Outline

• Recap and background

• Contiguous Memory Allocation

• Paging

• Structure of the Page Table

• Swapping

• Example: The Intel 32 and 64-bit
Architectures

• Example: ARMv8 Architecture

11/6/2019 CUNY | Brooklyn College 3

Recap: An Organization of a

Computer System
• Program must be brought (from disk) into

memory and placed within a process for it to be

run

• Main memory and registers are only storage

CPU can access directly

11/6/2019 CUNY | Brooklyn College 4

11/6/2019 CUNY | Brooklyn College 5

• Memory consists of a large array
of bytes, each with its own
address.

11/6/2019 CUNY | Brooklyn College 6

• At an address, the memory
contains either an instruction or
data

11/6/2019 CUNY | Brooklyn College 7

Machine instructions that take
memory addresses as arguments,
but none that take disk addresses

Recap: Addressing Memory

• Memory unit only sees a stream of:

• (when reading) address + read request, or

• (when writing) address + data + write

request

11/6/2019 CUNY | Brooklyn College 8

Recap: Key Takeaway

• Memory unit only sees a stream of:

• (when reading) address + read request, or

• (when writing) address + data + write request

• But multiple processes are running and
accessing the memory.

• How do we allocate memory to processes?

• How do we ensure correct operation?

• Problem to be solved

• Address binding and memory protection

11/6/2019 CUNY | Brooklyn College 9

The Address Binding Problem

11/6/2019 CUNY | Brooklyn College 10

int s = 0, a[3] = {1, 2, 3};
int main() {

for (int i=0; i<3; i++) {
s += a[i];

}
printf(“%d\n”, s);

}

Binary
executable file

on disk

Memory

At what address?

• A user program

goes through

multiple step of

processing and

transformation.

11/6/2019 CUNY | Brooklyn College 11

11/6/2019 CUNY | Brooklyn College 12

Address
binding

Address Representation and

Binding
• Addresses are represented in different ways at

different steps

1. Source code addresses usually symbolic

• i.e., gpa = grade_points/credits; print_gpa(sid, gpa);

2. Compiled code addresses bind to relocatable
addresses

• i.e. “14 bytes from beginning of this module”

3. Linker or loader will bind relocatable addresses to
absolute addresses

• i.e. 74014

4. Each binding maps one address space to another

11/6/2019 CUNY | Brooklyn College 13

Address Binding: Compilation

Time
• If memory location known a priori,

absolute code can be generated

• e.g., 1st Process loaded into address 0000 (or

other fixed address)

• Inconvenient to have first user process

physical address always at 0000

• Must recompile code if starting location

changes

11/6/2019 CUNY | Brooklyn College 14

Address Binding: Load Time

• Must generate relocatable code if memory location is
not known at compile time

• i.e. gpa is at “14 bytes from beginning of this module”
(offset).

• The address of the beginning of “this module” (starting
address or base address) is determined by the loader

• If the base address changes, we need only reload the
user code to incorporate this changed value.

• Address = Start Address + Offset

• e.g.,

• base address 1000 + offset 14 = 1014

• base address 9000 + offset 14 = 9014

11/6/2019 CUNY | Brooklyn College 15

Address Binding: Execution

Time
• Binding delayed until run time if the

process can be moved during its

execution from one memory segment to

another

• Most operating systems use this method

• But how?

• Need hardware support for address maps

• Most of our discussion is to explain how

11/6/2019 CUNY | Brooklyn College 16

Questions?

• Binding instruction and data to memory

addresses

• What? (Meaning)?

• When?

• Have we discussed “how”, in particular,

address binding at execution time?

11/6/2019 CUNY | Brooklyn College 17

CPU and MMU

• To support execution time address

binding

• Make a distinction between logical address

and physical address

• Introduce a hardware component: MMU

11/6/2019 CUNY | Brooklyn College 18

Logical vs. Physical Address

Space
• Logical address

• generated by the CPU; also referred to as virtual
address

• Physical address

• address seen by the memory management unit (MMU)

• Logical address space

• the set of all logical addresses generated by a
program

• Physical address space

• the set of all physical addresses generated by a
program

11/6/2019 CUNY | Brooklyn College 19

Execution-Time Address

Binding
• Logical and physical addresses are the same in

compile-time and load-time address-binding
schemes

• logical (virtual) and physical addresses differ in
execution-time address-binding scheme

• A logical address space is bound to a separate
physical address space at execution time

• How this execution-time address binding takes
spaces is central to memory management

11/6/2019 CUNY | Brooklyn College 20

Execution-Time Address

Binding via MMU
• MMU is a hardware device that at run time maps virtual to

physical address (address binding)

• The user program deals with logical addresses; it never

sees the real physical addresses

• Execution-time binding occurs when reference is made to

location in memory

• Logical addresses are bound to physical addresses

11/6/2019 CUNY | Brooklyn College 21

Questions?

• Concept of logical and physical addresses

and address spaces

• Concept of address binding

• Concept of exestuation-time address

binding and MMU

• How do we bind logical address to

physical address?

• Many methods were developed

11/6/2019 CUNY | Brooklyn College 22

Base-Limit Register Scheme

• Consider a relocation register or base

register scheme

• The base register is also called the relocation

register, or vice versa

• The value in the relocation register is added

to every address generated by a user

process at the time it is sent to memory

• relocation register + offset (in this case, logical

address) → physical address

11/6/2019 CUNY | Brooklyn College 23

11/6/2019 CUNY | Brooklyn College 24

11/6/2019 CUNY | Brooklyn College 25

• Base register  Relocation
register

• Dynamic relocation via base and
limit registers [Figure 3-3 in
Tanenbaum & Bos, 2014]

• Two processes, each
has its own logical
address spaces
starting at 0, which are
mapped to separate
physical address
spaces starting at the
addresses in their
respective relocation
(or base registers)

or
Relocation register

Questions?

• Relocation register scheme

• What is it?

• How do we bind logical address to physical

address?

• What does the operating system need to do

during a context switch?

11/6/2019 CUNY | Brooklyn College 26

Memory Allocation

• The main memory must accommodate

both the operating system and the

various user processes.

• We ought to allocate main memory in the

most efficient way possible.

• Example:

• contiguous memory allocation, an early

method

11/6/2019 CUNY | Brooklyn College 27

Continuous Memory

Allocation
• Each process is contained in a single

section of memory that is contiguous to

the section containing the next process.

• Memory protection?

• Limit register method

• Memory allocation?

• Variable partition method

11/6/2019 CUNY | Brooklyn College 28

Relocation and Limit

Registers

11/6/2019 CUNY | Brooklyn College 29

MMU

Memory Allocation

• Assign processes to variably sized partitions
in memory, where each partition may
contain exactly one process

• Partition can begin at any address

• A variable partition scheme

• Continuous allocation

• A process is given a partition of physical
addresses

• Physical address space of a process is then
continuously allocated

11/6/2019 CUNY | Brooklyn College 30

Variable Partition

• Operating system maintains information about:

• allocated partitions

• free partitions (hole)

• Variable-partition sizes for efficiency (sized to a
given process’ needs)

• When a process arrives, it is allocated memory
from a hole large enough to accommodate it

• Process exiting frees its partition, adjacent free
partitions combined

11/6/2019 CUNY | Brooklyn College 31

Memory Holes

• block of available memory

• holes of various size are scattered

throughout memory

11/6/2019 CUNY | Brooklyn College 32

Dynamic Storage-Allocation

Problem
• How to satisfy a request of size n from a list of

free holes?

• First-fit: Allocate the first hole that is big enough

• Best-fit: Allocate the smallest hole that is big enough;
must search entire list, unless ordered by size

• Produces the smallest leftover hole

• Worst-fit: Allocate the largest hole; must also search
entire list

• Produces the largest leftover hole

• First-fit and best-fit better than worst-fit in
terms of speed and storage utilization

11/6/2019 CUNY | Brooklyn College 33

Fragmentation

• External Fragmentation

• Total memory space exists to satisfy a request, but it
is not contiguous

• Internal Fragmentation

• Allocated memory may be slightly larger than
requested memory

• This size difference is memory internal to a partition,
but not being used

• First fit analysis reveals that given N blocks
allocated, another 0.5 N blocks lost to
fragmentation

• 1/3 may be unusable -> 50-percent rule

11/6/2019 CUNY | Brooklyn College 34

External Fragmentation

11/6/2019 CUNY | Brooklyn College 35

process 10

Internal Fragmentation

11/6/2019 CUNY | Brooklyn College 36

process 10

process 10
Internal
Fragmen-
tation
(e.g., less
than
4KB)

For efficient
tracking of holes
and partitions,
use blocks of
memory, e.g.,
4KB, then …

Combating Fragmentation

• Reduce external fragmentation by

compaction

• Shuffle memory contents to place all free

memory together in one large block

• Compaction is possible only if relocation is

dynamic, and is done at execution time

• I/O problem

• Latch job in memory while it is involved in I/O

• Do I/O only into OS buffers

11/6/2019 CUNY | Brooklyn College 37

Degree of Multiprogramming

• Degree of multiprogramming limited by

number of partitions

11/6/2019 CUNY | Brooklyn College 38

Questions

• Continuous Memory Allocation

• Memory protection mechanism and hardware

• Memory allocation

• Variable partition allocation

• Degree of multiprogramming

• Memory hole

• Memory fragmentation

• Compaction

• Any other methods to solve fragmentation
problem?

11/6/2019 CUNY | Brooklyn College 39

