
CISC 3320 MW3

Example IPC Systems and

Libraries
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

9/23/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides

by the authors of the textbook

9/23/2019 CUNY | Brooklyn College 2

Outline

• Examples of IPC Systems

• Shared memory (POSIX, Windows)

• Mailboxes/Ports (POSIX message queue, Windows
mailslot)

• Pipes (POSIX, Windows; named and
ordinary/anonymous)

• Windows advanced local procedure call (Your reading)

• Mach message passing (Your reading)

• Communication in Client-Server Systems

9/23/2019 CUNY | Brooklyn College 3

POSIX Shared Memory

• Create or open an existing shared memory segment

• System call shm_open()

• Process first creates shared memory segment, e.g.,
shm_fd = shm_open(name, O CREAT | O RDWR, 0666);

• Also used to open an existing segment

• Set the size of the segment, e.g.,

• ftruncate(shm_fd, 4096);

• Map the shared memory segment to cooperating
processes’ address space

• Use mmap() to memory-map a file pointer to the shared
memory object

• Reading and writing to shared memory is done by using
the pointer returned by mmap().

9/23/2019 CUNY | Brooklyn College 4

Windows Shared Memory

• Create a shared memory segment

• API CreateFileMapping(INVALID_HANDLE_VALUE, ...)

• Open an existing shared memory segment

• API OpenFileMapping()

• Map the shared memory segment to cooperating
processes’ address space

• Use MapViewOfFile() to memory-map a file pointer to

the shared memory object

• Reading and writing to shared memory is done by
using the pointer returned by MapViewOfFile().

9/23/2019 CUNY | Brooklyn College 5

Shared Memory

• Example programs

• POSIX (using Linux)

• Windows

9/23/2019 CUNY | Brooklyn College 6

Questions?

• POSIX shared memory

• Windows shared memory

• Essential system calls and APIs

• Example programs

• Don’t forget to do clean-up!

9/23/2019 CUNY | Brooklyn College 7

Mailbox/Port: POSIX Message

Queue
• Essential system calls

• mq_open

• mq_send

• mq_receive

• mq_close

• mq_unlink

9/23/2019 CUNY | Brooklyn College 8

Mailbox/Port: Windows

Mailslots
• Create mailslot

• CreateFile

• Mailslot name must be a “mailslot”, e.g.,

• \\.\mailslot\mymailslot

• Write to mailslot

• WriteFile

• Read from mailslot

• ReadFile

9/23/2019 CUNY | Brooklyn College 9

file://./mailslot/mymailslot

Mailboxes

• Example programs

• POSIX (using Linux)

• Windows

9/23/2019 CUNY | Brooklyn College 10

Questions

• POSIX message queue

• Windows mailslot

• Essential system calls and APIs

• Example programs

• Don’t forget to do clean-up!

9/23/2019 CUNY | Brooklyn College 11

Pipes

• Acts as a conduit allowing two processes

to communicate

• The communication pattern follows message

passing

• But, pipes may be implemented using shared

memory

9/23/2019 CUNY | Brooklyn College 12

Pipes: Design Issues

• Issues:

• Is communication unidirectional or bidirectional?

• In the case of two-way communication, is it half or full-
duplex?

• Must there exist a relationship (i.e., parent-child)
between the communicating processes?

• Can the pipes be used over a network?

• Ordinary pipes – cannot be accessed from outside
the process that created it. Typically, a parent
process creates a pipe and uses it to communicate
with a child process that it created.

• Named pipes – can be accessed without a parent-
child relationship

9/23/2019 CUNY | Brooklyn College 13

Ordinary Pipes

• Ordinary Pipes allow communication in standard
producer-consumer style: unidirectional

• Producer writes to one end (the write-end of
the pipe)

• Consumer reads from the other end (the read-
end of the pipe)

• Ordinary pipes are therefore unidirectional

• Require parent-child relationship between
communicating processes

• Windows calls these anonymous pipes

9/23/2019 CUNY | Brooklyn College 14

POSIX Ordinary Pipes

• Relies on processes’ parent-child

relationship via the fork system call

• The pipe system call creates a pipe, e.g.,

fd[0], fd[1]

• Read end: fd[0]

• Write end: fd[1]

9/23/2019 CUNY | Brooklyn College 15

Ordinary Pipes: Parent-Child

relationship
• To use the pipe in two processes, fork a

child process, resulting in a two

unidirectional communication links

9/23/2019 CUNY | Brooklyn College 16

Ordinary Pipe: Example

Applications

9/23/2019 CUNY | Brooklyn College 17

Windows Ordinary Pipes

• Called anonymous pipes

• Similar to UNIX, an anonymous pipe on

Windows is unidirectional, and emply

parent-child relationship

• Example application

9/23/2019 CUNY | Brooklyn College 18

Questions?

• Concept of pipes

• Ordinary pipes

• POSIX ordinary pipes

• Windows anonymous pipes

9/23/2019 CUNY | Brooklyn College 19

Named Pipes

• Named Pipes are more powerful than
ordinary pipes

• Communication is bidirectional

• No parent-child relationship is necessary
between the communicating processes

• Several processes can use the named pipe
for communication

• Provided on both UNIX and Windows
systems

9/23/2019 CUNY | Brooklyn College 20

UNIX Named Pipes: Example

Program

• Called “fifo”, See example programs

9/23/2019 CUNY | Brooklyn College 21

Questions?

• Concept of pipes

• Ordinary pipes

• Named pipes

• Example programs

9/23/2019 CUNY | Brooklyn College 22

Mach Message Passing

• Mach communication is message based

• Even system calls are messages

• Each task gets two ports at creation - Kernel and Notify

• Messages are sent and received using the mach_msg()function

• Ports needed for communication, created via

mach_port_allocate()

• Send and receive are flexible, for example four options if
mailbox full:

• Wait indefinitely

• Wait at most n milliseconds

• Return immediately

• Temporarily cache a message

9/23/2019 CUNY | Brooklyn College 23

Windows IPC

• Message-passing centric via advanced local
procedure call (LPC) facility

• Only works between processes on the same system

• Uses ports (like mailboxes) to establish and maintain
communication channels

• Communication works as follows:

• The client opens a handle to the subsystem’s connection port
object.

• The client sends a connection request.

• The server creates two private communication ports and
returns the handle to one of them to the client.

• The client and server use the corresponding port handle to
send messages or callbacks and to listen for replies.

9/23/2019 CUNY | Brooklyn College 24

Local Procedure Call (LPC)

9/23/2019 CUNY | Brooklyn College 25

Questions?

• Mach message passing

• Windows ALPC

9/23/2019 CUNY | Brooklyn College 26

