CISC 3320 MW3
Example IPC Systems and

Libraries

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College



Acknowledgement

» These slides are a revision of the slides
by the authors of the textbook



Outline

« Examples of IPC Systems

Shared memory (POSIX, Windows)

Mailboxes/Ports (POSIX message queue, Windows
mailslot)

Pipes (POSIX, Windows; named and
ordinary/anonymous)

Windows advanced local procedure call (Your reading)
Mach message passing (Your reading)

« Communication in Client-Server Systems



POSIX Shared Memory

Create or open an existing shared memory segment
« System call shm open ()

* Process first creates shared memory segment, e.g.,
shm fd = shm open(name, O CREAT | O RDWR, 0666) ;

« Also used to open an existing segment

Set the size of the segment, e.qg.,
* ftruncate(shm fd, 4096);

Map the shared memory segment to cooperating
processes’ address space

« Use mmap () to memory-map a file pointer to the shared
memory object

Reading and writing to shared memory is done by using
the pointer returned by mmap () .



Windows Shared Memory

Create a shared memory segment
* API CreateFileMapping (INVALID HANDLE VALUE, ...)

Open an existing shared memory segment
* API OpenFileMapping()

Map the shared memory segment to cooperating
processes’ address space

« Use MapViewOfFile () to memory-map a file pointer to
the shared memory object

Reading and writing to shared memory is done by
using the pointer returned by MapviewOfFile ().



Shared Memory

 Example programs
« POSIX (using Linux)

« Windows



Questions?

« POSIX shared memory
 Windows shared memory

» Essential system calls and APIs
 Example programs

« Don't forget to do clean-up!



Mailbox/Port: POSIX Message

Queue
» Essential system calls

* mQg_open
* mqg_send
* Mq_receive
 mqg_close

 mqg_unlink



Mailbox/Port: Windows

Mailslots
* Create mailslot

» CreateFile
« Mailslot name must be a “"mailslot”, e.qg.,

« \\.\mailslot\mymailslot

 Write to mailslot
 WriteFile

 Read from mailslot
 ReadFile


file://./mailslot/mymailslot

Mailboxes

 Example programs
« POSIX (using Linux)

« Windows



Questions

 POSIX message queue

« Windows mailslot

» Essential system calls and APIs
 Example programs

« Don't forget to do clean-up!



Pipes

« Acts as a conduit allowing two processes
to communicate

« The communication pattern follows message
passing

« But, pipes may be implemented using shared
memory



Pipes: Design Issues

Issues:

« Is communication unidirectional or bidirectional?

« In the case of two-way communication, is it half or full-
duplex?

« Must there exist a relationship (i.e., parent-child)
between the communicating processes?

« Can the pipes be used over a network?

Ordinary pipes - cannot be accessed from outside
the process that created it. Typically, a parent
process creates a pipe and uses it to communicate
with a child process that it created.

Named pipes - can be accessed without a parent-
child relationship



Ordinary Pipes

« Ordinary Pipes allow communication in standard
producer-consumer style: unidirectional

* Producer writes to one end (the write-end of
the pipe)

« Consumer reads from the other end (the read-
end of the pipe)

« Ordinary pipes are therefore unidirectional

« Require parent-child relationship between
communicating processes

« Windows calls these anonymous pipes




POSIX Ordinary Pipes

» Relies on processes’ parent-child
relationship via the fork system call

* The pipe system call creates a pipe, e.qg.,
fd[0], fd[1]
« Read end: fd[O]
 Write end: fd[1]



Ordinary Pipes: Parent-Child

relationship

« To use the pipe in two processes, fork a
child process, resulting in a two
unidirectional communication links

Parent Child

fd [0] fd [0]
fd [1]2 | fd [1]
pipe )

é (

—>

9/23/2019 CUNY | Brooklyn College 16



Ordinary Pipe: Example
Applications



Windows Ordinary Pipes

« Called anonymous pipes

« Similar to UNIX, an anonymous pipe on
Windows is unidirectional, and emply
parent-child relationship

« Example application



Questions?

« Concept of pipes
* Ordinary pipes
« POSIX ordinary pipes

« Windows anonymous pipes



Named Pipes

 Named Pipes are more powerful than
ordinary pipes
« Communication is bidirectional

 No parent-child relationship is necessary
between the communicating processes

« Several processes can use the named pipe
for communication

* Provided on both UNIX and Windows
systems



UNIX Named Pipes: Example
Program

 Called “fifo”, See example programs



Questions?

« Concept of pipes
* Ordinary pipes
 Named pipes

 Example programs



Mach Message Passing

« Mach communication is message based

Even system calls are messages
Each task gets two ports at creation - Kernel and Notify
Messages are sent and received using the mach _msg () function

Ports needed for communication, created via

mach port allocate()

Send and receive are flexible, for example four options if
mailbox full:

« Wait indefinitely
« Wait at most n milliseconds
« Return immediately

« Temporarily cache a message



Windows IPC

« Message-passing centric via advanced local
procedure call (LPC) facility

* Only works between processes on the same system

« Uses ports (like mailboxes) to establish and maintain
communication channels

« Communication works as follows:

The client opens a handle to the subsystem’s connection port
object.

The client sends a connection request.

The server creates two private communication ports and
returns the handle to one of them to the client.

The client and server use the corresponding port handle to
send messages or callbacks and to listen for replies.



Local Procedure Call (LPC)

Client

Connection
request

Connection

Handle

Server

Port

Handle

Client

Communication Port

!

Server

Communication Port

Handle

Shared
» Section Object

9/23/2019

(> 256 bytes)

<

CUNY | Brooklyn College

25




Questions?

 Mach message passing
« Windows ALPC



