CISC 3320 MW3
Inter-Process

Communication (IPC)

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Acknowledgement

» These slides are a revision of the slides
by the authors of the textbook

Outline

« Interprocess Communication (IPC)
« IPC in Shared-Memory Systems
« IPC in Message-Passing Systems

Interprocess Communication
(IPC)

* Processes within a system may be
independent or cooperating

Cooperating Processes

- Independent process cannot affect or be
affected by the execution of another process

« This is an advantage

« Cooperating process can affect or be
affected by the execution of another process

« Advantages of process cooperation
« Information sharing
« Computation speed-up

« Modularity

Multiprocess Architecture:
Example Applications

- Take advantage of independent and cooperating
process

« Independent processes
A process cannot be affected or affect another

« Cooperating processes
« Information sharing
« Computation speed-up

« Modularity
« Chrome Web browser

* The instructor’s Monte Carlo simulation program
to estimate =«

Multiprocess Architecture in
Chrome Browser

« Some Web browsers ran as single process
« If one web site causes trouble, entire browser can hang or crash

« On a single web page, there are multiple types of objects to
load/process/execute

« Modern browsers take advantage of multiprocess architecture
« Example: Google Chrome, Mozilla Firefox ...

« Google Chrome Browser is multiprocess with 3 different types of
processes:

« Browser process manages user interface, disk and network I/0

« Renderer process renders web pages, deals with HTML, Javascript. A
new renderer created for each website opened

Runs in sandbox restricting disk and network I/O, minimizing effect of
security exploits

« Plug-in process for each type of plug-in

New Renderer Created for
Each Website Opened

& Chrome Browser

C | @ https:// oogle.com/chrome/bro r/desktop/
c chrome DOWNLOAD ~ SET UP

Each tab represents a separate process.

client

0S-BOOK.COM % [wiley: Operating System ¢ X = =aBBC - Homepage

(2) create new
(1) request process to service
the request

9/16/2019

> server

N

(3) resume listening
for additional
client requests

CUNY | Brooklyn College: CISC 3320
MW 3

>

process

Multiprocess: Computation
Speed-up by Example

» Estimate = using a Monte Carlo
simulation

« What if a machine has multiple CPU cores?
Can we take advantage of it?

9/16/2019 CUNY | BrooklynM(\:/\clagege: CISC 3320

Multiprocess: Computation
Speed-up by Example

« Estimate = using a Monte Carlo simulation

« What if a machine has multiple CPU cores? Can
we take advantage of it?

« Case 1: we try 40000000 trials on 1 CPU core (1
child process)

« Case 2: we try 40000000/2 trials on 2 CPU core (2
child processes)

« Case 3: we try 40000000/4 trials on 4 CPU core (4
child processes)

« Child processes need to send the parent process
the results

Questions?

« Some design consideration for Android?

« Take advantage of multiprocess
architecture

« Information sharing
« Computation speed-up

« Modularity

Interprocess Communication

« Cooperating processes need interprocess communication
(IPC). There are two models of IPC:

« Shared memory

* Processes share a region of memory, and they can read and write to it
» System calls are required only to establish the shared-memory regions.

« All accesses are treated as routine memory accesses, and no assistance
from the kernel is required. Typically faster than message passing.

« Conflicts may arise (both processes write to the same area in the region)
« Message passing

« Processes exchange messages.

« Good for small messages, and for distributed systems where there is no
shared physical memory between processes on multiple hosts.

« There is no conflict needed to be avoided.

Communications Models

(a) Shared memory. (b) Message passing.
I: process A process A
shared memory :I process B
process B

message queue

—> Mo | M4 | My M3 ... |Mpe—

kernel
kernel

(a) (b)

CUNY | Brooklyn College: CISC 3320
MW 3

9/16/2019

Questions?

« Concept and benefits of interprocess
communication

« Concept of shared memory and message
passing

IPC for Shared Memory
Systems

« OS must provide a system call to create a shared memory
region, and communicating processes must attach this
shared memory segment to their address space.

« OS must removes the restriction that normally one
process is prevented from accessing another process’s
memory.

 The processes can then exchange information by reading
and writing data in the shared areas.

 The processes are also responsible for ensuring that they
are not writing to the same location simultaneously.

« The producer-consumer problem is a common paradigm
for cooperating processes.

Process Synchronization

« The communication is under the control of the
users processes not the operating system.

« Major issues is to provide mechanism that will
allow the user processes to synchronize their
actions when they access shared memory.

 The producer-consumer problem is a common
paradigm for cooperating processes.

« Synchronization is discussed in great details in a
few weeks

Producer-Consumer Problem

» Paradigm for cooperating processes

« Producer process produces information
that is consumed by a consumer process

« The information is stored in a memory
buffer

- unbounded-buffer places no practical limit on
the size of the buffer

 bounded-buffer assumes that there is a fixed
buffer size

Bounded-Buffer: Shared-

Memory Solution
» Shared data

e Producer
« COnsumer

« At present, we do not address
concurrent access to the shared memory
by the producer and the consumer.

Producer-Consumer: Shared

Data via Shared Memory
« Share BUFFER_SIZE - 1 items

#define BUFFER SIZE 10

typedef struct {
} item;

// The following are shared among cooperating processes
item buffer[BUFFER SIZE];
int in = 0;

int out = 0;

Producer-Consumer: Buffer
Full or Empty?

« The bounded buffer works in a cyclic fashion
(cyclic buffer, circular array)

- Index: 0, 1, 2, .. BUFFER SIZE-1, 0, 1, ..
« SO
* (in + 1) % BUFFER SIZE
* (out + 1) % BUFFER_SIZE
« Buffer Empty
When in == out
« Buffer Full
When (((in + 1) % BUFFER SIZE) == out

Producer Process via Shared
Memory

item next;produced;

while (true) {
/* produce an item in next produced */
while (((in + 1) % BUFFER SIZE) == out)
; /* do nothing when buffer is full */
buffer[in] = next produced; /* write it */

in = (in + 1) % BUFFER SIZE; /* next slot */

Consumer Process via Shared
Memory

item next_consumed;

while (true) {
while (in == out)

; /* do nothing when buffer is empty */
next consumed = buffer[out];

out = (out + 1) % BUFFER SIZE;

/* consume the item in next consumed * /

Producer-Consumer: Require

Synchronization

« Both producer and consumer may read
and write to the shared memory
concurrently (future lessons)

item next produced; item next consumed;
while (true) { while (true) {
while (in == out)
while (((in + 1) % BUFFER_SIZE)
== out)

next consumed = buffer[out];

out = (out + 1) % BUFFER SIZE;
buffer[in] = next produced; -

Questions?

« Producer-consumer problem for shared
memory

- Bounded-buffer producer and consumer
problem for shared memory
« What data are shared in the shared memory?
« How do we know the buffer is full?
« How do we know the buffer is empty?

« Why process synchronization is needed?

Message Passing

« Mechanism for processes to communicate
and to synchronize their actions

« Message system - processes communicate
with each other without resorting to shared
variables

« IPC facility provides two operations:
* send(message)
* receive(message)

« The message size is either fixed or variable

Message Passing:
Implementation Issues

« If processes P and Q wish to communicate, they need to:
« Establish a commmunication link between them
« Exchange messages via send/receive

« Implementation issues:
 How are links established?
« Can a link be associated with more than two processes?

« How many links can there be between every pair of
communicating processes?

« What is the capacity of a link?

« Is the size of a message that the link can accommodate fixed or
variable?

 Is a link unidirectional or bi-directional?

Communication Link

« Implementation of communication link
 Physical:
« Shared memory
« Hardware bus
* Network
 Logical:
« Direct or indirect
« Synchronous or asynchronous
« Automatic or explicit buffering

Message Passing: Design

Consideration
 Naming
* Direction and indirect communication

* Synchronization

» Blocking vs. non-blocking; synchronous vs.
asynchronous

« Buffering

Questions?

« Concept of message passing

» General issues and designh considerations

Direct Communication

* Processes must name each other explicitly:
« send (P, message) — send a message to process P

 receive(Q, message) — receive a message from
process Q

* Properties of communication link
« Links are established automatically

« A link is associated with exactly one pair of
communicating processes

« Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-
directional

Indirect Communication

« Messages are directed and received from mailboxes
(also referred to as ports)

« Each mailbox has a unique id
« Processes can communicate only if they share a mailbox

« Properties of communication link

« Link established only if processes share a common
mailbox

« A link may be associated with many processes

« Each pair of processes may share several communication
links

- Link may be unidirectional or bi-directional

Indirect Communication:
Operations and Primitives

» Operations

« create a new mailbox (port)
« send and receive messages through mailbox

« destroy a mailbox
* Primitives are defined as:

send(A, message) — send a message to
mailbox A

receive(A, message) — receive a message
from mailbox A

Indirect Communication:
Mailbox Sharing?

* Mailbox sharing
* P,, P,, and P; share mailbox A
- P,, sends; P, and P; receive
« Who gets the message?
 Solutions

 Allow a link to be associated with at most two
processes

« Allow only one process at a time to execute a receive
operation

« Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

Questions?

e Direction and indirect communications

« Comparison between Direction and
indirect communications

Message Passing:
Synchronization

« Message passing may be either blocking or non-blocking

« Blocking is considered synchronous
« Blocking send -- the sender is blocked until the message is received

« Blocking receive -- the receiver is blocked until a message is available
« Non-blocking is considered asynchronous
« Non-blocking send -- the sender sends the message and continue

« Non-blocking receive -- the receiver receives:
A valid message, or

Null message

« Different combinations of blocking and non-blocking possible

« If both send and receive are blocking, we have a rendezvous

Producer-Consumer via
Blocking Sender and Receiver

 Producer

message next produced;

while (true) {
/* produce an item in next produced */
send (next produced) ; /* blocking */

}
« Consumer

message next consumed;

while (true) {
receive (next consumed); /* blocking */

/* consume the item in next consumed */

Questions?

» Blocking vs non-blocking

* The producer-consumer problem for
blocking sender and blocking receiver
(i.e., rendezvous)

« Synchronous vs. asynchronous

Buffering

« Queue of messages attached to the link.

 Implemented in one of three ways

« Zero capacity — no messages are queued on a
link.

Sender must wait for receiver (rendezvous)

 Bounded capacity - finite length of n messages
Sender must wait if link full

« Unbounded capacity - infinite length
Sender never waits

Questions?

« Buffering for message passing

« When must the sender wait?

