
CISC 3320 MW3

Inter-Process

Communication (IPC)
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

9/16/2019 1
CUNY | Brooklyn College: CISC 3320

MW3

Acknowledgement

• These slides are a revision of the slides

by the authors of the textbook

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
2

Outline

• Interprocess Communication (IPC)

• IPC in Shared-Memory Systems

• IPC in Message-Passing Systems

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
3

Interprocess Communication

(IPC)
• Processes within a system may be

independent or cooperating

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
4

Cooperating Processes

• Independent process cannot affect or be
affected by the execution of another process

• This is an advantage

• Cooperating process can affect or be
affected by the execution of another process

• Advantages of process cooperation

• Information sharing

• Computation speed-up

• Modularity

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
5

Multiprocess Architecture:

Example Applications
• Take advantage of independent and cooperating

process

• Independent processes

• A process cannot be affected or affect another

• Cooperating processes

• Information sharing

• Computation speed-up

• Modularity

• Chrome Web browser

• The instructor’s Monte Carlo simulation program
to estimate

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
6

Multiprocess Architecture in

Chrome Browser
• Some Web browsers ran as single process

• If one web site causes trouble, entire browser can hang or crash

• On a single web page, there are multiple types of objects to
load/process/execute

• Modern browsers take advantage of multiprocess architecture

• Example: Google Chrome, Mozilla Firefox …

• Google Chrome Browser is multiprocess with 3 different types of
processes:

• Browser process manages user interface, disk and network I/O

• Renderer process renders web pages, deals with HTML, Javascript. A
new renderer created for each website opened

• Runs in sandbox restricting disk and network I/O, minimizing effect of
security exploits

• Plug-in process for each type of plug-in

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
7

New Renderer Created for

Each Website Opened

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
8

Multiprocess: Computation

Speed-up by Example
• Estimate using a Monte Carlo

simulation

• What if a machine has multiple CPU cores?

Can we take advantage of it?

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
9

Multiprocess: Computation

Speed-up by Example
• Estimate using a Monte Carlo simulation

• What if a machine has multiple CPU cores? Can
we take advantage of it?

• Case 1: we try 40000000 trials on 1 CPU core (1
child process)

• Case 2: we try 40000000/2 trials on 2 CPU core (2
child processes)

• Case 3: we try 40000000/4 trials on 4 CPU core (4
child processes)

• Child processes need to send the parent process
the results

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
10

Questions?

• Some design consideration for Android?

• Take advantage of multiprocess

architecture

• Information sharing

• Computation speed-up

• Modularity

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
11

Interprocess Communication

• Cooperating processes need interprocess communication
(IPC). There are two models of IPC:

• Shared memory

• Processes share a region of memory, and they can read and write to it

• System calls are required only to establish the shared-memory regions.

• All accesses are treated as routine memory accesses, and no assistance
from the kernel is required. Typically faster than message passing.

• Conflicts may arise (both processes write to the same area in the region)

• Message passing

• Processes exchange messages.

• Good for small messages, and for distributed systems where there is no
shared physical memory between processes on multiple hosts.

• There is no conflict needed to be avoided.

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
12

Communications Models

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
13

(a) Shared memory. (b) Message passing.

Questions?

• Concept and benefits of interprocess

communication

• Concept of shared memory and message

passing

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
14

IPC for Shared Memory

Systems
• OS must provide a system call to create a shared memory

region, and communicating processes must attach this
shared memory segment to their address space.

• OS must removes the restriction that normally one
process is prevented from accessing another process’s
memory.

• The processes can then exchange information by reading
and writing data in the shared areas.

• The processes are also responsible for ensuring that they
are not writing to the same location simultaneously.

• The producer–consumer problem is a common paradigm
for cooperating processes.

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
15

Process Synchronization

• The communication is under the control of the
users processes not the operating system.

• Major issues is to provide mechanism that will
allow the user processes to synchronize their
actions when they access shared memory.

• The producer–consumer problem is a common
paradigm for cooperating processes.

• Synchronization is discussed in great details in a
few weeks

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
16

Producer-Consumer Problem

• Paradigm for cooperating processes

• Producer process produces information
that is consumed by a consumer process

• The information is stored in a memory
buffer

• unbounded-buffer places no practical limit on
the size of the buffer

• bounded-buffer assumes that there is a fixed
buffer size

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
17

Bounded-Buffer: Shared-

Memory Solution
• Shared data

• Producer

• Consumer

• At present, we do not address

concurrent access to the shared memory

by the producer and the consumer.

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
18

Producer-Consumer: Shared

Data via Shared Memory
• Share BUFFER_SIZE – 1 items

#define BUFFER_SIZE 10

typedef struct {

. . .

} item;

// The following are shared among cooperating processes

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
19

Producer-Consumer: Buffer

Full or Empty?
• The bounded buffer works in a cyclic fashion

(cyclic buffer, circular array)

• Index: 0, 1, 2, … BUFFER_SIZE-1, 0, 1, …

• So

• (in + 1) % BUFFER_SIZE

• (out + 1) % BUFFER_SIZE

• Buffer Empty

When in == out

• Buffer Full

When (((in + 1) % BUFFER_SIZE) == out

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
20

Producer Process via Shared

Memory
item next_produced;

while (true) {

/* produce an item in next produced */

while (((in + 1) % BUFFER_SIZE) == out)

; /* do nothing when buffer is full */

buffer[in] = next_produced; /* write it */

in = (in + 1) % BUFFER_SIZE; /* next slot */

}

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
21

Consumer Process via Shared

Memory
item next_consumed;

while (true) {

while (in == out)

; /* do nothing when buffer is empty */

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume the item in next_consumed */

}

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
22

Producer-Consumer: Require

Synchronization
• Both producer and consumer may read

and write to the shared memory

concurrently (future lessons)

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
23

item next_produced;

while (true) {

while (((in + 1) % BUFFER_SIZE)

== out)

;

buffer[in] = next_produced;

in = (in + 1) % BUFFER_SIZE;

}

item next_consumed;

while (true) {

while (in == out)

;

next_consumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* consume next_consumed */

}

Questions?

• Producer-consumer problem for shared

memory

• Bounded-buffer producer and consumer

problem for shared memory

• What data are shared in the shared memory?

• How do we know the buffer is full?

• How do we know the buffer is empty?

• Why process synchronization is needed?

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
24

Message Passing

• Mechanism for processes to communicate
and to synchronize their actions

• Message system – processes communicate
with each other without resorting to shared
variables

• IPC facility provides two operations:

• send(message)

• receive(message)

• The message size is either fixed or variable

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
25

Message Passing:

Implementation Issues
• If processes P and Q wish to communicate, they need to:

• Establish a communication link between them

• Exchange messages via send/receive

• Implementation issues:

• How are links established?

• Can a link be associated with more than two processes?

• How many links can there be between every pair of
communicating processes?

• What is the capacity of a link?

• Is the size of a message that the link can accommodate fixed or
variable?

• Is a link unidirectional or bi-directional?

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
26

Communication Link

• Implementation of communication link

• Physical:

• Shared memory

• Hardware bus

• Network

• Logical:

• Direct or indirect

• Synchronous or asynchronous

• Automatic or explicit buffering

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
27

Message Passing: Design

Consideration
• Naming

• Direction and indirect communication

• Synchronization

• Blocking vs. non-blocking; synchronous vs.

asynchronous

• Buffering

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
28

Questions?

• Concept of message passing

• General issues and design considerations

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
29

Direct Communication

• Processes must name each other explicitly:

• send (P, message) – send a message to process P

• receive(Q, message) – receive a message from
process Q

• Properties of communication link

• Links are established automatically

• A link is associated with exactly one pair of
communicating processes

• Between each pair there exists exactly one link

• The link may be unidirectional, but is usually bi-
directional

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
30

Indirect Communication

• Messages are directed and received from mailboxes
(also referred to as ports)

• Each mailbox has a unique id

• Processes can communicate only if they share a mailbox

• Properties of communication link

• Link established only if processes share a common
mailbox

• A link may be associated with many processes

• Each pair of processes may share several communication
links

• Link may be unidirectional or bi-directional

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
31

Indirect Communication:

Operations and Primitives
• Operations

• create a new mailbox (port)

• send and receive messages through mailbox

• destroy a mailbox

• Primitives are defined as:

send(A, message) – send a message to
mailbox A

receive(A, message) – receive a message
from mailbox A

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
32

Indirect Communication:

Mailbox Sharing?
• Mailbox sharing

• P1, P2, and P3 share mailbox A

• P1, sends; P2 and P3 receive

• Who gets the message?

• Solutions

• Allow a link to be associated with at most two
processes

• Allow only one process at a time to execute a receive
operation

• Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
33

Questions?

• Direction and indirect communications

• Comparison between Direction and

indirect communications

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
34

Message Passing:

Synchronization
• Message passing may be either blocking or non-blocking

• Blocking is considered synchronous

• Blocking send -- the sender is blocked until the message is received

• Blocking receive -- the receiver is blocked until a message is available

• Non-blocking is considered asynchronous

• Non-blocking send -- the sender sends the message and continue

• Non-blocking receive -- the receiver receives:

• A valid message, or

• Null message

• Different combinations of blocking and non-blocking possible

• If both send and receive are blocking, we have a rendezvous

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
35

Producer-Consumer via

Blocking Sender and Receiver
• Producer

message next_produced;

while (true) {

/* produce an item in next_produced */

send(next_produced); /* blocking */

}

• Consumer

message next_consumed;

while (true) {

receive(next_consumed); /* blocking */

/* consume the item in next_consumed */

}
9/16/2019

CUNY | Brooklyn College: CISC 3320
MW3

36

Questions?

• Blocking vs non-blocking

• The producer-consumer problem for

blocking sender and blocking receiver

(i.e., rendezvous)

• Synchronous vs. asynchronous

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
37

Buffering

• Queue of messages attached to the link.

• Implemented in one of three ways

• Zero capacity – no messages are queued on a

link.

Sender must wait for receiver (rendezvous)

• Bounded capacity – finite length of n messages

Sender must wait if link full

• Unbounded capacity – infinite length

Sender never waits

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
38

Questions?

• Buffering for message passing

• When must the sender wait?

9/16/2019
CUNY | Brooklyn College: CISC 3320

MW3
39

