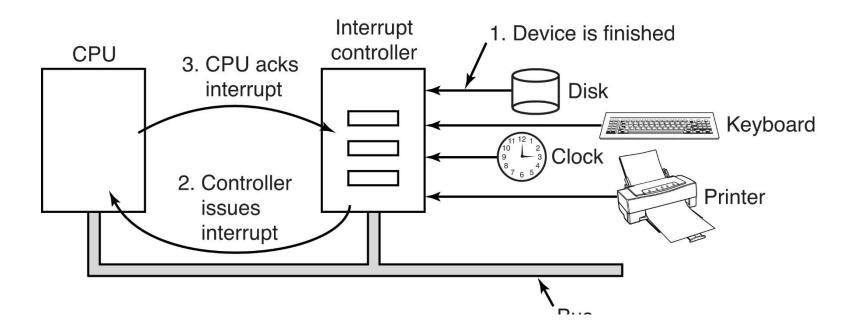
## CISC 3320 MW3 Interrupts

Hui Chen

Department of Computer & Information Science
CUNY Brooklyn College

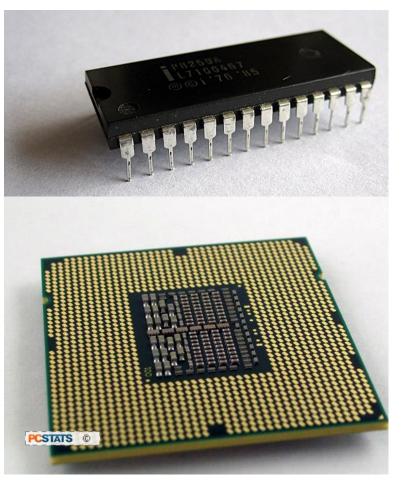
### Acknowledgement

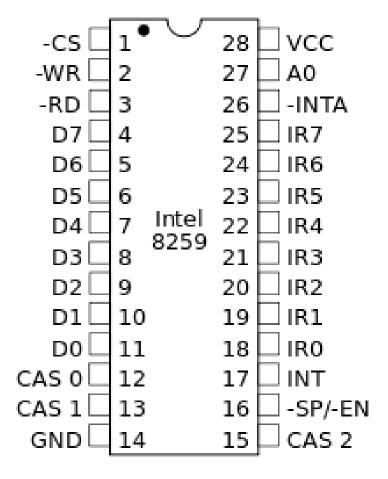
 These slides are a revision of the slides provided by the authors of the textbook via the publisher of the textbook


#### Outline

- Concept of interrupts
- Interrupt service routing, interrupt vector, and interrupt vector table
- Interrupt handling
- Interrupt design consideration

#### OS and Interrupts


- An operating system is interrupt driven
  - Timers
  - I/O
  - ...


#### How an Interrupt Happens?



• [Figure 5-5 in Tanenbaum & Bos, 2014]

## Example: CPU & Interrupt Controller





CUNY | Brooklyn College: CISC 3320

#### Interrupts

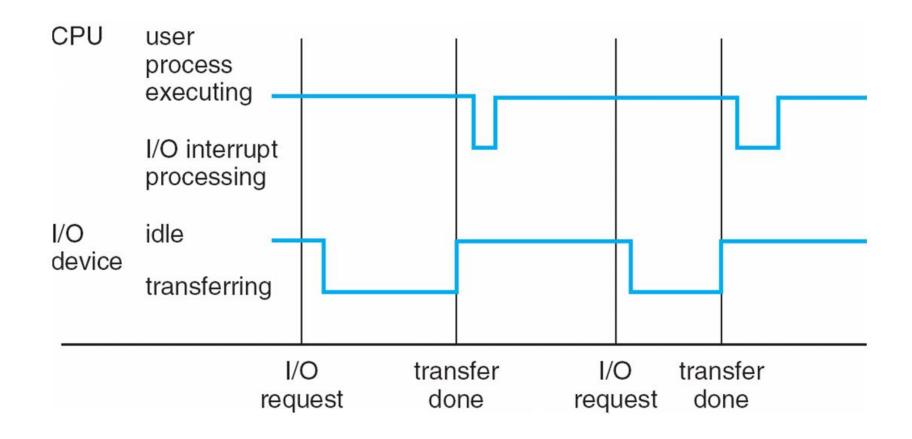
- Interrupt transfers control to the interrupt service routine generally
- Two sources of interrupts
  - External (hardware-generated) interrupts: interrupts are generally caused by hardware
  - Software generated interrupts: a trap or exception is a softwaregenerated interrupt caused either by an error or a user request
- Interrupt vector (interrupt descriptor by Intel)
  - Interrupt service routine: interrupt handler, a program processes the interrupt
  - Interrupt vector table: consists of interrupt vectors
  - Interrupt vector: the address of an interrupt handler
- Interrupt architecture must save the address of the interrupted instruction

CUNY | Brooklyn College: CISC 3320

#### Interrupt Vectors

- Address to interrupt routines
  - Some PC event/interrupt-vector numbering

| Vector Number | Description                             |
|---------------|-----------------------------------------|
| 0             | Divide Error                            |
| 1             | Debug Exception                         |
| <u></u>       |                                         |
| 6             | Invalid Opcode                          |
|               |                                         |
| 32-255        | Maskable Interrupts (deviced generated) |


#### Handling Interrupt

- CPU senses its interrupt-request line after each instruction
- When it is "lit", CPU saves the current state
  - Example: push registers PSW and PC to the stack
- CPU jumps to the interrupt-handler routine at a fixed address in the memory
- Interrupt-handler routine completes its task and restore the CPU state
  - Pop the registers from the stack

# Design Consideration: Interrupts

- Maskable and nonmaskable interrupts
- Interrupt priorities and interrupt chaining
- Exceptions and software interrupts (traps)
- Precise and imprecise interrupts

# Interrupt Timeline: I/O Interrupts



CUNY | Brooklyn College: CISC 3320

#### **Exceptions and Interrupts**

- Interrupt mechanism also used for exceptions
  - Terminate process, crash system due to hardware error
- Page fault executes when memory access error
  - System call executes via trap to trigger kernel to execute request
- Multi-CPU systems can process interrupts concurrently
  - If operating system designed to handle it
- Used for time-sensitive processing, frequent, must be fast

#### Questions?

Reviewed the concept of interrupts