
CISC 3320

Deadlock Prevention
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

11/4/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides

provided by the authors of the textbook

via the publisher of the textbook

11/4/2019 CUNY | Brooklyn College 2

Outline

• Deadlock Prevention

• Invalidating necessary conditions for
deadlocks

• Deadlock Avoidance

• Deadlock Detection and Recovery

11/4/2019 CUNY | Brooklyn College 3

Deadlock Prevention

• By invalidating one of the 4 necessary
conditions

• Mutual Exclusion

• Hold and wait

• No preemption

• Circular wait

• Let’s examine each of these 4 prevention
strategies

11/4/2019 CUNY | Brooklyn College 4

Invalidating Mutual

Exclusion?
• Consider two types of resources

• Sharable resources

• Example

• Read-only files

• Non-sharable resources

• Example

• Printers

• “Sharable” means access simultaneously.

• Mutual exclusion not required for sharable resources

• Mutual exclusion must hold for non-sharable resources

• Cannot deny the mutual-exclusion condition, thus, cannot
prevent deadlocks

11/4/2019 CUNY | Brooklyn College 5

Invalidating Hold-and-Wait?

• To do it, we must guarantee that whenever
a process requests a resource, it does not
hold any other resources

1. Require process to request and be allocated all
its resources before it begins execution

2. Or allow process to request resources only
when the process has none allocated to it (e.g.,
by releasing it)

• Problem with these two approaches to
invalidate Hold-and-Wait

• Low resource utilization; starvation possible;
impractical

11/4/2019 CUNY | Brooklyn College 6

Invalidating No-Preemption?

• Implies that we should allow preemption for
resource allocation. But how?

1. If a process that is holding some resources requests
another resource that cannot be immediately allocated
to it, then all resources currently being held are
released (i.e., call it “yielding”?)

2. We check whether requested resources are allocated
to some other thread that is waiting for additional
resources. If so, we preempt the desired resources
from the waiting thread and allocate them to the
requesting thread. (i.e., shall we call it “robbing”?)

• Preempted resources are added to the list of resources for
which the process is waiting

• Process will be restarted only when it can regain its old
resources, as well as the new ones that it is requesting

11/4/2019 CUNY | Brooklyn College 7

Resource Preemption

• Invalidating No-Preemption by resource

“preemption”

• Suitable for resources whose state can be

easily saved and restored later

• such as CPU registers and database transactions

• It cannot generally be applied to such

resources as mutex locks and semaphores

• Precisely the type of resources where deadlock

occurs most commonly.

11/4/2019 CUNY | Brooklyn College 8

Invalidating Circular Wait?

• Generally impractical in most situations

for deadlock prevention by invalidating

• Mutual exclusion, hold-and-wait, and non-

preemption

• Is there any means to invalidate Circular

Wait?

11/4/2019 CUNY | Brooklyn College 9

Approaches for Invalidating

Circular Wait
• Resource ordering

• Impose a total ordering of all resource types

by simply assigning each resource (i.e.,

mutex locks) a unique number

• Resources must be acquired in order based

on the numbers

11/4/2019 CUNY | Brooklyn College 10

Resource Ordering:

Formulation
• Let R = {R1, R2, …, Rm} be the set of resource types.

• Define a one-to-one function F: R → N to each resource
type a unique integer number.

• A thread initially requests an instance of a resource, Ri,
can request an instance of resource Rj if and only if F(Rj)
> F(Ri).

• Alternatively, a thread requesting an instance of resource
Rj must have released any resources Ri such that F(Ri) ≥
F(Rj).

• Note also that if several instances of the same resource
type are needed, a single request for all of them must be
issued.

11/4/2019 CUNY | Brooklyn College 11

Proof by Contradiction

1. Assume that a circular wait exists, i.e., let the set
of threads involved in the circular wait be {T0, T1,
…, Tn}, where Ti is waiting for a resource Ri,
which is held by thread Ti+1.

• Modulo arithmetic is used on the indexes, so that Tn is
waiting for a resource Rn held by T0.

2. Then, since thread Ti+1 is holding resource Ri
while requesting resource Ri+1, we must have
F(Ri) < F(Ri+1) for all i. But this condition means
that F(R0) < F(R1) < … < F(Rn) < F(R0). By
transitivity, F(R0) < F(R0), which is impossible.
Therefore, there can be no circular wait.

11/4/2019 CUNY | Brooklyn College 12

Remarks: Using Resource

Ordering
• Resource ordering does not in itself

prevent deadlock.

• Application developers must write

programs that follow the ordering.

11/4/2019 CUNY | Brooklyn College 13

Resource Ordering: Example

• Two resources (i.e., two mutexes) , and

their ordering

• Order of first_mutex: 1

• Order of second_mutex: 5

• Which means first_mutex must be

acquired first, and second_mutex second

(because 1 < 5)

11/4/2019 CUNY | Brooklyn College 14

• Code for

thread_two

should NOT

be

written as

illustrated

11/4/2019 CUNY | Brooklyn College 15

Remarks: Using Resource

Ordering: Challenges
• However, establishing a lock ordering can

be difficult

• e.g., considering on a system with hundreds

or even thousands of locks …

• To address this challenge, many Java

developers have adopted the strategy of

using the method System.identityHashCode

as the function for ordering lock acquisition.

11/4/2019 CUNY | Brooklyn College 16

Remarks: Using Resource

Ordering: Dynamic Acquiring
• Imposing a lock ordering does not guarantee deadlock

prevention if locks can be acquired dynamically

• Example: assume we have a function that transfers funds
between two bank accounts.

• To prevent a race condition, each account has an associated
mutex lock that is obtained from a get_lock() function

• Deadlock is possible if two threads simultaneously invoke the
transaction() function, transposing different accounts.

• Thread 1: transaction(checking_account, savings_account, 25.0)

• Thread 2: transaction(savings_account, checking_account, 50.0)

11/4/2019 CUNY | Brooklyn College 17

The transaction Function
void transaction(Account from, Account to, double amount)

{

mutex lock1, lock2;

lock1 = get_lock(from);

lock2 = get_lock(to);

acquire(lock1);

acquire(lock2);

withdraw(from, amount);

deposit(to, amount);

release(lock2);

release(lock1);

}

11/4/2019 CUNY | Brooklyn College 18

Questions?

• Deadlock prevention

• Invalidating any one of the 4 necessary

conditions

• Mutual exclusion

• Hold and wait

• Non-preemption

• Circular wait

• Approaches and limitations?

11/4/2019 CUNY | Brooklyn College 19

