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Outline

• Deadlock Detection 

• Recovery from Deadlock
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Deadlock Detection and 

Recovery
• Allow system to enter deadlock state 

• When detecting deadlock, recover from it

• Detection algorithm

• Recovery scheme
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Two Cases

• Single instance of each resource type

• Multiple instances of a resource type
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Data Structure for Single 

Instance of Each Resource 

Type
• Maintain wait-for graph

• Nodes are processes

• Pi → Pj if Pi is waiting for Pj

• Periodically invoke an algorithm that 
searches for a cycle in the graph. If there is 
a cycle, there exists a deadlock

• An algorithm to detect a cycle in a graph 
requires an order of n2 operations, where n
is the number of vertices in the graph
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Resource-Allocation Graph 

and  Wait-for Graph
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Data Structure for Multiple 

Instances of a Resource Type
• Available: A vector of length m indicates 
the number of available resources of each 
type

• Allocation: An n x m matrix defines the 
number of resources of each type currently 
allocated to each process

• Request: An n x m matrix indicates the 
current request  of each process.  If 
Request[i][j] = k, then process Pi is 
requesting k more instances of resource 
type Rj.
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Detection Algorithm

1. Let Work and Finish be vectors of length m and n, 
respectively Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi  0, then 
Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:

(a) Finish[i] == false

(b) Requesti  Work

If no such i exists, go to step 4

3. Work = Work + Allocationi

Finish[i] = true
go to step 2

4. If Finish[i] == false, for some i, 1  i  n, then the system 
is in deadlock state. Moreover, if Finish[i] == false, then Pi

is deadlocked
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Time Complexity

• Algorithm requires an order of O(m x n2) 

operations to detect whether the system 

is in deadlocked state

• Where m: number of resource types, n: 

number of processes
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Detection Algorithm: Example

• Five processes P0 through P4; three resource types 
A (7 instances), B (2 instances), and C (6 instances)

• Snapshot at time T0:

Allocation Request Available

A B C A B C A B C

P0 0 1 0              0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3              0 0 0 

P3 2 1 1 1 0 0 

P4 0 0 2 0 0 2

• Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i
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• P2 requests an additional instance of type C

Request

A B C

P0 0 0 0

P1 2 0 2

P2 0 0 1

P3 1 0 0 

P4 0 0 2

• State of system?

• Can reclaim resources held by process P0, but insufficient resources to fulfill other 
processes; requests

• Deadlock exists, consisting of processes P1, P2, P3, and P4
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Use Detection Algorithm

• When, and how often, to invoke depends 
on:

• How often a deadlock is likely to occur?

• How many processes will need to be rolled back?

• one for each disjoint cycle

• If detection algorithm is invoked arbitrarily, 
there may be many cycles in the resource 
graph and so we would not be able to tell 
which of the many deadlocked processes 
“caused” the deadlock
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Questions?

• Detecting deadlock

• One instance per resource type

• Resource allocation graph

• Multiple instance per resource type

• Similar to the Banker’s algorithm
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Recovery from Deadlock

• Process termination

• Resource preemption
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Process Termination

• Abort all deadlocked processes

• Abort one process at a time until the deadlock cycle is 
eliminated

• In which order should we choose to abort?

1. Priority of the process

2. How long process has computed, and how much longer to 
completion

3. Resources the process has used

4. Resources process needs to complete

5. How many processes will need to be terminated

6. Is process interactive or batch?
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Recovery from Deadlock:  

Resource Preemption
• Selecting a victim – minimize cost

• Rollback – return to some safe state, 

restart process for that state

• Starvation – same process may always 

be picked as victim, include number of 

rollback in cost factor
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Questions?

• Process termination

• Resource preemption
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