
CISC 3320

Deadlock Detection and

Recovery
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

11/4/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides

provided by the authors of the textbook

via the publisher of the textbook

11/4/2019 CUNY | Brooklyn College 2

Outline

• Deadlock Detection

• Recovery from Deadlock

11/4/2019 CUNY | Brooklyn College 3

Deadlock Detection and

Recovery
• Allow system to enter deadlock state

• When detecting deadlock, recover from it

• Detection algorithm

• Recovery scheme

11/4/2019 CUNY | Brooklyn College 4

Two Cases

• Single instance of each resource type

• Multiple instances of a resource type

11/4/2019 CUNY | Brooklyn College 5

Data Structure for Single

Instance of Each Resource

Type
• Maintain wait-for graph

• Nodes are processes

• Pi → Pj if Pi is waiting for Pj

• Periodically invoke an algorithm that
searches for a cycle in the graph. If there is
a cycle, there exists a deadlock

• An algorithm to detect a cycle in a graph
requires an order of n2 operations, where n
is the number of vertices in the graph

11/4/2019 CUNY | Brooklyn College 6

Resource-Allocation Graph

and Wait-for Graph

11/4/2019 CUNY | Brooklyn College 7

Resource-Allocation Graph Corresponding wait-for graph

Data Structure for Multiple

Instances of a Resource Type
• Available: A vector of length m indicates
the number of available resources of each
type

• Allocation: An n x m matrix defines the
number of resources of each type currently
allocated to each process

• Request: An n x m matrix indicates the
current request of each process. If
Request[i][j] = k, then process Pi is
requesting k more instances of resource
type Rj.

11/4/2019 CUNY | Brooklyn College 8

Detection Algorithm

1. Let Work and Finish be vectors of length m and n,
respectively Initialize:

(a) Work = Available

(b) For i = 1,2, …, n, if Allocationi  0, then
Finish[i] = false; otherwise, Finish[i] = true

2. Find an index i such that both:

(a) Finish[i] == false

(b) Requesti  Work

If no such i exists, go to step 4

3. Work = Work + Allocationi

Finish[i] = true
go to step 2

4. If Finish[i] == false, for some i, 1  i  n, then the system
is in deadlock state. Moreover, if Finish[i] == false, then Pi

is deadlocked
11/4/2019 CUNY | Brooklyn College 9

Time Complexity

• Algorithm requires an order of O(m x n2)

operations to detect whether the system

is in deadlocked state

• Where m: number of resource types, n:

number of processes

11/4/2019 CUNY | Brooklyn College 10

Detection Algorithm: Example

• Five processes P0 through P4; three resource types
A (7 instances), B (2 instances), and C (6 instances)

• Snapshot at time T0:

Allocation Request Available

A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

• Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i

11/4/2019 CUNY | Brooklyn College 11

• P2 requests an additional instance of type C

Request

A B C

P0 0 0 0

P1 2 0 2

P2 0 0 1

P3 1 0 0

P4 0 0 2

• State of system?

• Can reclaim resources held by process P0, but insufficient resources to fulfill other
processes; requests

• Deadlock exists, consisting of processes P1, P2, P3, and P4

11/4/2019 CUNY | Brooklyn College 12

Use Detection Algorithm

• When, and how often, to invoke depends
on:

• How often a deadlock is likely to occur?

• How many processes will need to be rolled back?

• one for each disjoint cycle

• If detection algorithm is invoked arbitrarily,
there may be many cycles in the resource
graph and so we would not be able to tell
which of the many deadlocked processes
“caused” the deadlock

11/4/2019 CUNY | Brooklyn College 13

Questions?

• Detecting deadlock

• One instance per resource type

• Resource allocation graph

• Multiple instance per resource type

• Similar to the Banker’s algorithm

11/4/2019 CUNY | Brooklyn College 14

Recovery from Deadlock

• Process termination

• Resource preemption

11/4/2019 CUNY | Brooklyn College 15

Process Termination

• Abort all deadlocked processes

• Abort one process at a time until the deadlock cycle is
eliminated

• In which order should we choose to abort?

1. Priority of the process

2. How long process has computed, and how much longer to
completion

3. Resources the process has used

4. Resources process needs to complete

5. How many processes will need to be terminated

6. Is process interactive or batch?

11/4/2019 CUNY | Brooklyn College 16

Recovery from Deadlock:

Resource Preemption
• Selecting a victim – minimize cost

• Rollback – return to some safe state,

restart process for that state

• Starvation – same process may always

be picked as victim, include number of

rollback in cost factor

11/4/2019 CUNY | Brooklyn College 17

Questions?

• Process termination

• Resource preemption

11/4/2019 CUNY | Brooklyn College 18

