CISC 3320 Deadlock and Resource Allocation Graph

Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

Acknowledgement

 These slides are a revision of the slides provided by the authors of the textbook via the publisher of the textbook

Outline

- System Model
- Deadlock Characterization (Necessary Conditions)
- Resource Allocation Graph
- Deadlock in Multithreaded Applications
- Overview of Methods for Handling Deadlocks

Problem when Sharing Resources

- A proposed law by the Kansas State Legislature (Botkin and Harlow, 1953)
 - "When two trains approach each other at a crossing, both shall come to a full stop and neither shall start up again until the other has gone."

This can also happen ...

The Dining Philosophers

- 1. while (true) {
- 2. wait (chopstick[i]);
 - . wait (chopStick[(i + 1) % 5]);
 - /* eat for awhile */
 - . signal (chopstick[i]);
 - signal (chopstick[(i + 1) % 5]);
 - /* think for awhile */

What is the problem with this algorithm?

}

System Model

- System consists of resources
- Resource types R₁, R₂, . . ., R_m
 - Examples
 - CPU cycles, memory space, I/O devices
- Each resource type R_i has W_i instances.
- A set of processes, and each process utilizes a resource as follows:
 - request
 - use
 - release

Deadlock

 Every process in the set is waiting for an event to be triggered by another in the set (request or release resource)

Deadlock Characterization

- Deadlock can arise if four conditions hold simultaneously. (the 4 necessary conditions for deadlocks)
- Mutual exclusion: only one process at a time can use a resource
- Hold and wait: a process holding at least one resource is waiting to acquire additional resources held by other processes
- No preemption: a resource can be released only voluntarily by the process holding it, after that process has completed its task
- Circular wait: there exists a set {P₀, P₁, ..., P_n} of waiting processes such that P₀ is waiting for a resource that is held by P₁, P₁ is waiting for a resource that is held by P₂, ..., P_{n-1} is waiting for a resource that is held by P_n, and P_n is waiting for a resource that is held by P₀.

Questions?

- Concept of deadlock
- Necessary conditions of deadlock

Resource-Allocation Graph

- A set of vertices V and a set of edges E.
- V is partitioned into two types:
 - P = {P₁, P₂, ..., P_n}, the set consisting of all the processes in the system (drawn in <u>ovals</u>)
 - $R = \{R_1, R_2, ..., R_m\}$, the set consisting of all resource types in the system (drawn in <u>rectangles</u>)
- **request edge** directed edge $P_i \rightarrow R_j$
 - P_i requests or waits for R_j
- assignment edge directed edge $R_i \rightarrow P_i$
 - R_i is assigned to or is held by P_i

Resource-Allocation Graph: Example 1

Can you describe the graphs in English? (Hint: oval: process; rectangle: resource; arrow: Resource → Process, Process → Resource, i.e., is being held/assigned to or requests by/waiting fcⁿ

• Resource allocation graphs. (a) Holding a resource. (b) Requesting a resource. (c) Deadlock. [Figure 6-3 in Tanenbaum & Bos, 2014]

Questions?

- Concept of resource allocation graph
- Examples of simple resource allocation graph
 - Each type of resources has only a single instance
- What if a type of resource has multiple instances?

Resource with Multiple Instances

- A type of resource may have multiple instances R_1
- Notations

CUNY | Brooklyn College

Resource Allocation Graph: Example 2

- Can you draw the resource allocation graph for the following scenario?
 - One instance of R1
 - Two instances of R2
 - One instance of R3
 - Three instance of R4
 - T1 holds one instance of R2 and is waiting for an instance of R1
 - T2 holds one instance of R1, one instance of R2, and is waiting for an instance of R3
 - T3 is holds one instance of R3

CUNY | Brooklyn College

Is There a Dead Lock?

- Mutual exclusion?
- Hold and wait?
- No preemption?
- Circular wait?

Resource Allocation Graph: Example 3

- Can you draw the resource allocation graph for the following scenario?
 - One instance of R1
 - Two instances of R2
 - One instance of R3
 - Three instance of R4
 - T1 holds one instance of R2 and is waiting for an instance of R1
 - T2 holds one instance of R1, one instance of R2, and is waiting for an instance of R3
 - <u>T3 is holds one instance of R3, and is waiting for an</u> <u>instance of R2</u>

Is There a Dead Lock?

- Mutual exclusion?
- Hold and wait?
- No preemption?
- Circular wait?

Resource Allocation Graph: Example 4

- Can you draw the resource allocation graph for the following scenario?
 - Two instances of R1
 - Two instances of R2
 - T1 holds one instance of R2 and is waiting for an instance of R1
 - T2 holds one instance of R1
 - T3 holds one instance of R1 and is waiting for an instance of R2
 - T4 is waiting for an instance of R2

Is There a Dead Lock?

- Mutual exclusion?
- Hold and wait?
- No preemption?
- Circular wait?

T.

12

3

 R_1

 R_2

Determine Existence of Deadlocks

- If graph contains no cycles \Rightarrow no deadlock
- If graph contains a cycle \Rightarrow
 - if only <u>one</u> instance per resource type, then deadlock
 - if <u>several</u> instances per resource type, <u>possibility</u> of deadlock

Resource Allocation Graph: Example 5

- What's the resource allocation graph?
 - 2 processes, P1 and P2 share two 2 CD-RW drives (D1, D2)
 - P1 is using D1, P2 is using D2
 - P1 requests D2 before releasing D1; P2 requests D1 before releasing D2
- Is there a deadlock?

Questions?

- Resource allocation graph
- Determine existence of deadlock using resource allocation graph

Deadlock and Scheduling

- Two examples
 - A generic example
 - Resource sharing and deadlock
 - A Pthread semaphore example
 - Semaphore and mutexes are resources.

Resource Allocation and Scheduling: Example

- Three processes: A, B, C
- Three resources: R, S, T
- <u>Each</u> process's requests and release <u>schedule</u> is in the sequence below:

Α	B	С
Request R	Request S	Request T
Request S	Request T	Request R
Release R	Release S	Release T
Release S	Release T	Release R
(a)	(b)	(c)

OS Schedule with Deadlock

CUNY | Brooklyn College

Schedule without Deadlock

CUNY | Brooklyn College

Semaphores or Mutexes are Resources

- Access non-preemptive resource with semaphore (request, use, release)
 - down/signal/P; up/wait/V

```
typedef int semaphore;
                                           typedef int semaphore;
                                            semaphore resource_1;
semaphore resource_1;
                                            semaphore resource_2;
void process_A(void) {
                                            void process_A(void) {
    down(&resource_1);
                                                 down(&resource_1);
    use_resource_1();
                                                 down(&resource_2);
    up(&resource_1);
                                                 use_both_resources();
                                                 up(&resource_2);
                                                 up(&resource_1);
                                            }
                                                        (b)
            (a)
```

• [Figure 6-1 in Tanenbaum & Bos, 2014 (a) one resource (b) two resources]

11/4/2019

Coding Style Matters

• Two mutex locks are created an initialized:

pthread_mutex_t first_mutex;
pthread_mutex_t second_mutex;

pthread_mutex_init(&first_mutex,NULL);
pthread_mutex_init(&second_mutex,NULL);

- Shared in the following fashion (next slide)
- Is there a dead lock?
 - Hint: mutex/binary semaphore; 0 or 1, available or not available; i.e., one instance per resource type)

```
/* thread_one runs in this function */
void *do_work_one(void *param)
ł
   pthread_mutex_lock(&first_mutex);
   pthread_mutex_lock(&second_mutex);
   /**
    * Do some work
    */
   pthread_mutex_unlock(&second_mutex);
   pthread_mutex_unlock(&first_mutex);
   pthread_exit(0);
/* thread_two runs in this function */
void *do_work_two(void *param)
ł
   pthread_mutex_lock(&second_mutex);
   pthread_mutex_lock(&first_mutex);
   /**
    * Do some work
    */
   pthread_mutex_unlock(&first_mutex);
   pthread_mutex_unlock(&second_mutex);
   pthread_exit(0);
```

11/4/2019

Illustration using Resource Allocation Graph

Resource-Allocation Graph: Example 6

 Describe the following resource allocation graph?

Deadlock Scenario

- Deadlock occurs when
 - Thread 1 acquires first_mutex and thread 2 acquires second_mutex;
 - Thread 1 then waits for second_mutex and thread 2 waits for first_mutex.
- which is illustrated in the resource allocation graph

Subtle Coding Styles

Deadlock free

```
typedef int semaphore;
semaphore resource_1;
semaphore resource_2;
```

```
void process_A(void) {
    down(&resource_1);
    down(&resource_2);
    use_both_resources();
    up(&resource_2);
    up(&resource_1);
}
```

```
void process_B(void) {
    down(&resource_1);
    down(&resource_2);
    use_both_resources();
    up(&resource_2);
    up(&resource_1);
}
```

Deadlock

semaphore resource_1;
semaphore resource_2;

```
void process_A(void) {
    down(&resource_1);
    down(&resource_2);
    use_both_resources();
    up(&resource_2);
    up(&resource_1);
}
```

```
void process_B(void) {
    down(&resource_2);
    down(&resource_1);
    use_both_resources();
    up(&resource_1);
    up(&resource_2);
}
```

• [Figure 6-2 in Tanenbaum & Bos, 2014]

11/4/2019

CUNY | Brooklyn College

Remarks

- Whether the deadlock happens or not depends on the result of a race (or scheduling)
 - Difficult to debug because it only happens sporadically
- Difference between deadlock free and deadlocked code is subtle in coding style

Questions?

- Synchronization tools are resources
- Subtle to write deadlock-free code, and difficult to debug
- How do we deal with deadlocks?

Methods for Handling Deadlocks

- Ensure that the system will *never* enter a deadlock state:
 - Deadlock <u>prevention</u> (by structurally negating one of the four required conditions)
 - Deadlock <u>avoidance</u> (by carefully allocating resources)
- Allow the system to enter a deadlock state and then recover
 - Deadlock <u>detection and recovery</u> (Let deadlocks occur, detect them, and then take action)
- Ignore the problem and pretend that deadlocks never occur in the system.
 - The <u>Ostrich algorithm</u>

The Ostrich Algorithm

In my system a deadlock happens once in a blue moon ... but to handle it ...

Questions?

- System Model
- Deadlock in Multithreaded Applications
- Deadlock Characterization and Resource Allocation Graph
- Methods for Handling Deadlocks
 - Presentation, avoidance, detection & recovery
 - The Ostrich Algorithm