CISC 3320
Deadlock and Resource

Allocation Graph

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Acknowledgement

* These slides are a revision of the slides
provided by the authors of the textbook
via the publisher of the textbook

Outline

- System Model

- Deadlock Characterization (Necessary
Conditions)

- Resource Allocation Graph
- Deadlock in Multithreaded Applications

- Overview of Methods for Handling
Deadlocks

Problem when Sharing
Resources

* A proposed law by the Kansas State Legislature
(Botkin and Harlow, 1953)

 "When two trains approach each other at a crossing,
both shall come to a full stop and neither shall start
up again until the other has gone.”

11/4/2019 CUNY | Brooklyn College

This can also happen ...

11/4/2019 CUNY | Brooklyn College

The Dining Philosophers

1. while (true){

2. wait (chopstick[i])
3. wait (chopStick[(1 + 1) % 5]),
4. /* eat for awhile */
5. signal (chopstick[i])
6. signal (chopstick[(1 + 1) % 5]);
I 1. /* think for awhile */
8.}

What is the problem with this algorithm?

System Model

« System consists of resources

» Resource types R, R,, . . ., R,
« Examples

« CPU cycles, memory space, I/O devices

- Each resource type R, has W, instances.

« A set of processes, and each process utilizes a
resource as follows:

* request
e use
e release

Deadlock

« Every process in the set is waiting for an
event to be triggered by another in the
set (request or release resource)

Deadlock Characterization

« Deadlock can arise if four conditions hold simultaneously.
(the 4 necessary conditions for deadlocks)

 Mutual exclusion: only one process at a time can use a
resource

- Hold and wait: a process holding at least one resource
is waiting to acquire additional resources held by other
processes

- No preemption: a resource can be released only
voluntarily by the process holding it, after that process
has completed its task

 Circular wait: there exists a set {P,, Py, ..., P} Of
waiting processes such that P, is waiting for a resource
that is held by P,, P; is waiting for a resource that is held
by P,, ..., P,_; is waiting for a resource that is held by P,

and P, is waiting for a resource that is held by P,.
11/4/2019 CUNY | Brooklyn College

Questions?

« Concept of deadlock

* Necessary conditions of deadlock

Resource-Allocation Graph

« A set of vertices V and a set of edges E.

« V is partitioned into two types:

« P={Py, P, ..., P,}, the set consisting of all the
processes in the system (drawn in ovals)

- R={Ry, R,, ..., R}, the set consisting of all resource
types in the system (drawn in rectangles)

- request edge - directed edge P, — R;
* P; requests or waits for R;

- assignment edge - directed edge R; — P,
* R; is assigned to or is held by P,

11/4/2019 CUNY | Brooklyn College 11

Resource-Allocation Graph:

Example 1

« Can you describe the graphs in English? (Hint: oval: process;
rectangle: resource; arrow: Resource = Process, Process 2>
Resource, i.e., is being held/assigned to or requests by/waiting

fe

®

A

R

(a)

| N
© o’

(b)

* Resource allocation graphs. (a) Holding a resource. (b) Requesting a
resource. (c) Deadlock. [Figure 6-3 in Tanenbaum & Bos, 2014]

Questions?

« Concept of resource allocation graph
« Examples of simple resource allocation
graph

« Each type of resources has only a single
iInstance

« What if a type of resource has multiple
iInstances?

Resource with Multiple

Instances
* A type of resource may have multiple

iInstances R,
 Notations =
o /

: o

R,

Resource Allocation Graph:
Example 2

« Can you draw the resource allocation graph for
the following scenario?

« One instance of R1

« Two instances of R2
« One instance of R3

« Three instance of R4

 T1 holds one instance of R2 and is waiting for an
instance of R1

« T2 holds one instance of R1, one instance of R2, and
is waiting for an instance of R3

« T3 is holds one instance of R3

11/4/2019

\

R, o

R,

CUNY | Brooklyn College

16

Is There a R, R,
Dead Lock? o .

 Mutual exclusion?
 Hold and wait?

 No preemption?

e Circular wait?

\

R, :

11/4/2019 CUNY | Brooklyn College 17

Resource Allocation Graph:
Example 3

« Can you draw the resource allocation graph for the
following scenario?

One instance of R1
Two instances of R2
One instance of R3
Three instance of R4

T1 holds one instance of R2 and is waiting for an
instance of R1

T2 holds one instance of R1, one instance of R2, and is
waiting for an instance of R3

T3 is holds one instance of R3, and is waiting for an
instance of R2

11/4/2019

\

R,

CUNY | Brooklyn College

19

Is There a i i

Dead Lock? "\ \
 Mutual exclusion?

 Hold and wait?

 No preemption?

e Circular wait?

\

R, o

11/4/2019 CUNY | Brooklyn College 20

Resource Allocation Graph:
Example 4

- Can you draw the resource allocation graph
for the following scenario?

« Two instances of R1
« Two instances of R2

 T1 holds one instance of R2 and is waiting for an
instance of R1

« T2 holds one instance of R1

« T3 holds one instance of R1 and is waiting for an
instance of R2

- T4 is waiting for an instance of R2

11/4/2019

IBN

CUNY | Brooklyn College

22

Is There a -
Dead Lock? =
- Mutual exclusion? o
* Hold and wait?
 No preemption?
 Circular wait?
Ro
®
.\

11/4/2019 CUNY | Brooklyn College

N

23

Determine Existence of

Deadlocks

 If graph contains no cycles = no
deadlock

« If graph contains a cycle =

« if only one instance per resource type, then
deadlock

« if several instances per resource type,
possibility of deadlock

Resource Allocation Graph:

Example 5
 What's the resource allocation graph?

« 2 processes, P1 and P2 share two 2 CD-RW
drives (D1, D2)

* P1 is using D1, P2 is using D2

* P1 requests D2 before releasing D1; P2
requests D1 before releasing D2

e Is there a deadlock?

Questions?

« Resource allocation graph

* Determine existence of deadlock using
resource allocation graph

Deadlock and Scheduling

« TwWo examples
* A generic example
« Resource sharing and deadlock

« A Pthread semaphore example

« Semaphore and mutexes are resources.

Resource Allocation and

Scheduling: Example
* Three processes: A, B, C

 Three resources: R, S, T

« Each process’s requests and release
schedule is in the sequence below:

A B C
Hequest R Hequest S Request T
Request S Request T Request R
Release R Helease S Release T
Release S Release T Release R

(a) (b) (c)

11/4/2019 CUNY | Brooklyn College 28

OS Schedule with Deadlock

!

!

I 1. A requests R

I 2. B requests S

I 3.Crequests T
4. A requests S

l 5.B requests T

I 6. C requests R

I deadlock

!

!

!

(d)

11/4/2019

A

Request R
Request S
Release R
Release S

(a)

B

Request S
Request T
Release S
Release T

(b)

C}D@ Q;)@

S

(e)

®

1

C

Request T
Request R
Release T
Release R

(c)

® ©
[]

i

(9)

|

8

&) ©
I

(h)

CUNY | Brooklyn College

)

29

Schedule without Deadlock

1. Arequests R
2.Crequests T
3. Arequests S
4. Crequests R
5. Areleases R
6. Areleases S
no deadlock

(k)

11/4/2019

Request R Request S
Request S Request T
Release R Release S
Release S Release T

(a) (b)

OO OWEeO

(0) (P)

CUNY | Brooklyn College

Request T
Request R
Release T
Release R

()

®) ® ©
N

@GTD

30

Semaphores or Mutexes are

Resources

« Access non-preemptive resource with
semaphore (request, use, release)

- down/signal/P; up/wait/V

typedef int semaphore; typedef int semaphore;
semaphore resource_1; semaphore resource_1;
semaphore resource_2;

void process_A(void) { void process_A(void) {
down(&resource_1); down(&resource_1);
use_resource_1(); down(&resource_2);
up(&resource_1); use_both_resources();
} up(&resource_2);

up(&resource_1);

}
() (®)

 [Figure 6-1 in Tanenbaum & Bos, 2014 (a) one resource (b) two resources]
11/4/2019 CUNY | Brooklyn College 31

Coding Style Matters

« Two mutex locks are created an initialized:

pthread mutex t first mutex;
pthread mutex_t second mutex;

pthread mutex_init (&first mutex,NULL) ;
pthread mutex_init (&second mutex,NULL) ;

« Shared in the following fashion (next slide)
 Is there a dead lock?

« Hint: mutex/binary semaphore; 0 or 1, available
or not available; i.e., one instance per resource

type)

11/4/2019 CUNY | Brooklyn College 32

11/4/2019

/* thread_one runs in this function */
void *do_work one(void *param)

{

}

pthread mutex lock(&first mutex) ;
pthread mutex lock(&second mutex) ;
/ **

* Do some work

*/
pthread mutex unlock(&second mutex) ;
pthread mutex unlock(&first mutex) ;

pthread exit (0) ;

/* thread two runs in this function */
void *do_work two(void *param)

{

}

pthread mutex lock(&second mutex) ;
pthread mutex lock(&first mutex) ;
/ **

* Do some work

*/
pthread mutex unlock(&first mutex) ;
pthread mutex unlock(&second mutex) ;

pthread exit (0);

Illustration using Resource
Allocation Graph

first_mutex second_mutex
[) []

\/ / \

P

11/4/2019 CUNY | Brooklyn College 34

Resource-Allocation Graph:

Example 6

« Describe the following resource allocation
graph?

first._ mutex second_mutex
[] []

\/ \/

P

11/4/2019 CUNY | Brooklyn College 35

Deadlock Scenario

 Deadlock occurs when

» Thread 1 acquires first mutex and thread 2
acquires second mutex;

» Thread 1 then waits for second mutex and
thread 2 waits for first mutex.

 which is illustrated in the resource
allocation graph

Subtle Coding Styles

Deadlock free

typedef int semaphore;
semaphore resource_1;
semaphore resource_2;

void process_A(void) {
down(&resource_1);
down(&resource_2);
use_both_resources();
up(&resource_2);
up(&resource_1);

}

void process_B(void) {
down(&resource_1);
down(&resource_2);
use_both_resources();
up(&resource_2);
up(&resource_1);

(a)

Deadlock

semaphore resource_1;
semaphore resource_2;

void process_A(void) {
down(&resource_1);
down(&resource_2);
use_both_resources();
up(&resource_2);
up(&resource_1);

}

void process_B(void) {
down(&resource_2);
down(&resource_1);
use_both_resources();
up(&resource_1);
up(&resource_2);

(b)
* [Figure 6-2 in Tanenbaum & Bos, 2014]

11/4/2019

CUNY | Brooklyn College

37

Remarks

« Whether the deadlock happens or not
depends on the result of a race (or
scheduling)

« Difficult to debug because it only happens
sporadically

 Difference between deadlock free and
deadlocked code is subtle in coding style

Questions?

* Synchronization tools are resources

« Subtle to write deadlock-free code, and
difficult to debug

« How do we deal with deadlocks?

Methods for Handling
Deadlocks

« Ensure that the system will never enter a deadlock
state:

« Deadlock prevention (by structurally negating one of the
four required conditions)

« Deadlock avoidance (by carefully allocating resources)

Allow the system to enter a deadlock state and then
recover

« Deadlock detection and recovery (Let deadlocks occur,
detect them, and then take action)

Ignore the problem and pretend that deadlocks
never occur in the system.

« The Ostrich algorithm

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwiG34Kb_LbhAhWOzlkKHWeTCRUQFjAAegQIAhAB&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FOstrich_algorithm&usg=AOvVaw21j4QuUEmodVn-SJBsSJrc

The Ostrich Algorithm

In my system a deadlock
happens once in a blue moon ...
but to handle it ...

11/4/2019 CUNY | Brooklyn College

41

Questions?

- System Model
- Deadlock in Multithreaded Applications

- Deadlock Characterization and Resource
Allocation Graph

- Methods for Handling Deadlocks

- Presentation, avoidance, detection &
recovery

- The Ostrich Algorithm

