
CISC 3320

Deadlock and Resource

Allocation Graph
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

11/4/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides

provided by the authors of the textbook

via the publisher of the textbook

11/4/2019 CUNY | Brooklyn College 2

Outline

• System Model

• Deadlock Characterization (Necessary

Conditions)

• Resource Allocation Graph

• Deadlock in Multithreaded Applications

• Overview of Methods for Handling

Deadlocks

11/4/2019 CUNY | Brooklyn College 3

Problem when Sharing

Resources
• A proposed law by the Kansas State Legislature

(Botkin and Harlow, 1953)

• “When two trains approach each other at a crossing,

both shall come to a full stop and neither shall start

up again until the other has gone.”

11/4/2019 CUNY | Brooklyn College 4

This can also happen …

11/4/2019 CUNY | Brooklyn College 5

The Dining Philosophers

11/4/2019 CUNY | Brooklyn College 6

1. while (true){

2. wait (chopstick[i]);

3. wait (chopStick[(i + 1) % 5]);

4. /* eat for awhile */

5. signal (chopstick[i]);

6. signal (chopstick[(i + 1) % 5]);

7. /* think for awhile */

8. }

• What is the problem with this algorithm?

System Model

• System consists of resources

• Resource types R1, R2, . . ., Rm

• Examples

• CPU cycles, memory space, I/O devices

• Each resource type Ri has Wi instances.

• A set of processes, and each process utilizes a
resource as follows:

• request

• use

• release

11/4/2019 CUNY | Brooklyn College 7

Deadlock

• Every process in the set is waiting for an

event to be triggered by another in the

set (request or release resource)

11/4/2019 CUNY | Brooklyn College 8

Deadlock Characterization

• Deadlock can arise if four conditions hold simultaneously.
(the 4 necessary conditions for deadlocks)

• Mutual exclusion: only one process at a time can use a
resource

• Hold and wait: a process holding at least one resource
is waiting to acquire additional resources held by other
processes

• No preemption: a resource can be released only
voluntarily by the process holding it, after that process
has completed its task

• Circular wait: there exists a set {P0, P1, …, Pn} of
waiting processes such that P0 is waiting for a resource
that is held by P1, P1 is waiting for a resource that is held
by P2, …, Pn–1 is waiting for a resource that is held by Pn,
and Pn is waiting for a resource that is held by P0.

11/4/2019 CUNY | Brooklyn College 9

Questions?

• Concept of deadlock

• Necessary conditions of deadlock

11/4/2019 CUNY | Brooklyn College 10

Resource-Allocation Graph

• A set of vertices V and a set of edges E.

• V is partitioned into two types:

• P = {P1, P2, …, Pn}, the set consisting of all the
processes in the system (drawn in ovals)

• R = {R1, R2, …, Rm}, the set consisting of all resource
types in the system (drawn in rectangles)

• request edge – directed edge Pi → Rj

• Pi requests or waits for Rj

• assignment edge – directed edge Rj → Pi

• Rj is assigned to or is held by Pi

11/4/2019 CUNY | Brooklyn College 11

Resource-Allocation Graph:

Example 1
• Can you describe the graphs in English? (Hint: oval: process;

rectangle: resource; arrow: Resource → Process, Process →

Resource, i.e., is being held/assigned to or requests by/waiting

for)

11/4/2019 CUNY | Brooklyn College 12

• Resource allocation graphs. (a) Holding a resource. (b) Requesting a
resource. (c) Deadlock. [Figure 6-3 in Tanenbaum & Bos, 2014]

Questions?

• Concept of resource allocation graph

• Examples of simple resource allocation

graph

• Each type of resources has only a single

instance

• What if a type of resource has multiple

instances?

11/4/2019 CUNY | Brooklyn College 13

Resource with Multiple

Instances
• A type of resource may have multiple

instances

• Notations

11/4/2019 CUNY | Brooklyn College 14

Resource Allocation Graph:

Example 2
• Can you draw the resource allocation graph for

the following scenario?

• One instance of R1

• Two instances of R2

• One instance of R3

• Three instance of R4

• T1 holds one instance of R2 and is waiting for an
instance of R1

• T2 holds one instance of R1, one instance of R2, and
is waiting for an instance of R3

• T3 is holds one instance of R3

11/4/2019 CUNY | Brooklyn College 15

11/4/2019 CUNY | Brooklyn College 16

Is There a

Dead Lock?
• Mutual exclusion?

• Hold and wait?

• No preemption?

• Circular wait?

11/4/2019 CUNY | Brooklyn College 17

Resource Allocation Graph:

Example 3
• Can you draw the resource allocation graph for the

following scenario?

• One instance of R1

• Two instances of R2

• One instance of R3

• Three instance of R4

• T1 holds one instance of R2 and is waiting for an
instance of R1

• T2 holds one instance of R1, one instance of R2, and is
waiting for an instance of R3

• T3 is holds one instance of R3, and is waiting for an
instance of R2

11/4/2019 CUNY | Brooklyn College 18

11/4/2019 CUNY | Brooklyn College 19

Is There a

Dead Lock?
• Mutual exclusion?

• Hold and wait?

• No preemption?

• Circular wait?

11/4/2019 CUNY | Brooklyn College 20

Resource Allocation Graph:

Example 4
• Can you draw the resource allocation graph
for the following scenario?

• Two instances of R1

• Two instances of R2

• T1 holds one instance of R2 and is waiting for an
instance of R1

• T2 holds one instance of R1

• T3 holds one instance of R1 and is waiting for an
instance of R2

• T4 is waiting for an instance of R2

11/4/2019 CUNY | Brooklyn College 21

11/4/2019 CUNY | Brooklyn College 22

Is There a

Dead Lock?
• Mutual exclusion?

• Hold and wait?

• No preemption?

• Circular wait?

11/4/2019 CUNY | Brooklyn College 23

Determine Existence of

Deadlocks
• If graph contains no cycles  no

deadlock

• If graph contains a cycle 

• if only one instance per resource type, then

deadlock

• if several instances per resource type,

possibility of deadlock

11/4/2019 CUNY | Brooklyn College 24

Resource Allocation Graph:

Example 5
• What’s the resource allocation graph?

• 2 processes, P1 and P2 share two 2 CD-RW

drives (D1, D2)

• P1 is using D1, P2 is using D2

• P1 requests D2 before releasing D1; P2

requests D1 before releasing D2

• Is there a deadlock?

11/4/2019 CUNY | Brooklyn College 25

Questions?

• Resource allocation graph

• Determine existence of deadlock using

resource allocation graph

11/4/2019 CUNY | Brooklyn College 26

Deadlock and Scheduling

• Two examples

• A generic example

• Resource sharing and deadlock

• A Pthread semaphore example

• Semaphore and mutexes are resources.

11/4/2019 CUNY | Brooklyn College 27

Resource Allocation and

Scheduling: Example
• Three processes: A, B, C

• Three resources: R, S, T

• Each process’s requests and release

schedule is in the sequence below:

11/4/2019 CUNY | Brooklyn College 28

OS Schedule with Deadlock

11/4/2019 CUNY | Brooklyn College 29

Schedule without Deadlock

11/4/2019 CUNY | Brooklyn College 30

Semaphores or Mutexes are

Resources
• Access non-preemptive resource with

semaphore (request, use, release)

• down/signal/P; up/wait/V

11/4/2019 CUNY | Brooklyn College 31

• [Figure 6-1 in Tanenbaum & Bos, 2014 (a) one resource (b) two resources]

Coding Style Matters

• Two mutex locks are created an initialized:

• Shared in the following fashion (next slide)

• Is there a dead lock?

• Hint: mutex/binary semaphore; 0 or 1, available
or not available; i.e., one instance per resource
type)

11/4/2019 CUNY | Brooklyn College 32

11/4/2019 CUNY | Brooklyn College 33

Illustration using Resource

Allocation Graph

11/4/2019 CUNY | Brooklyn College 34

Resource-Allocation Graph:

Example 6
• Describe the following resource allocation

graph?

11/4/2019 CUNY | Brooklyn College 35

Deadlock Scenario

• Deadlock occurs when

• Thread 1 acquires first_mutex and thread 2

acquires second_mutex;

• Thread 1 then waits for second_mutex and

thread 2 waits for first_mutex.

• which is illustrated in the resource

allocation graph

11/4/2019 CUNY | Brooklyn College 36

Subtle Coding Styles

Deadlock free Deadlock

11/4/2019 CUNY | Brooklyn College 37

• [Figure 6-2 in Tanenbaum & Bos, 2014]

Remarks

• Whether the deadlock happens or not

depends on the result of a race (or

scheduling)

• Difficult to debug because it only happens

sporadically

• Difference between deadlock free and

deadlocked code is subtle in coding style

11/4/2019 CUNY | Brooklyn College 38

Questions?

• Synchronization tools are resources

• Subtle to write deadlock-free code, and

difficult to debug

• How do we deal with deadlocks?

11/4/2019 CUNY | Brooklyn College 39

Methods for Handling

Deadlocks
• Ensure that the system will never enter a deadlock

state:

• Deadlock prevention (by structurally negating one of the
four required conditions)

• Deadlock avoidance (by carefully allocating resources)

• Allow the system to enter a deadlock state and then
recover

• Deadlock detection and recovery (Let deadlocks occur,
detect them, and then take action)

• Ignore the problem and pretend that deadlocks
never occur in the system.

• The Ostrich algorithm

11/4/2019 CUNY | Brooklyn College 40

https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=2ahUKEwiG34Kb_LbhAhWOzlkKHWeTCRUQFjAAegQIAhAB&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FOstrich_algorithm&usg=AOvVaw21j4QuUEmodVn-SJBsSJrc

The Ostrich Algorithm

11/4/2019 CUNY | Brooklyn College 41

In my system a deadlock
happens once in a blue moon …

but to handle it …

Questions?

• System Model

• Deadlock in Multithreaded Applications

• Deadlock Characterization and Resource
Allocation Graph

• Methods for Handling Deadlocks

• Presentation, avoidance, detection &
recovery

• The Ostrich Algorithm

11/4/2019 CUNY | Brooklyn College 42

