
CISC 3320

CPU Scheduling:

Operating System

Examples
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

10/7/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides

provided by the authors of the textbook

via the publisher of the textbook

10/7/2019 CUNY | Brooklyn College 2

Outline

• Operating Systems Examples

• Linux scheduling

• Windows scheduling

• Solaris scheduling

10/7/2019 CUNY | Brooklyn College 3

Linux Scheduling

• Prior to kernel version 2.5, Linux ran a
variation of standard UNIX scheduling
algorithm

• Version 2.5 moved to constant order
O(1) scheduling time

• “Complete Fair Scheduler” since version
2.6.23

10/7/2019 CUNY | Brooklyn College 4

Linux Variation of Unix

Scheduling
• Not designed with SMP systems in mind

• Did not adequately support systems with

multiple processors.

• In addition, it resulted in poor performance

for systems with a large number of runnable

processes.

10/7/2019 CUNY | Brooklyn College 5

Linux “O(1)” Scheduler
• Preemptive, priority based

• Two priority ranges: time-sharing and real-time

• Real-time range from 0 to 99 and nice value from 100 to 140

• Map into global priority with numerically lower values indicating
higher priority

• Higher priority gets larger quantum

• Task run-able as long as time left in time slice (active)

• If no time left (expired), not run-able until all other tasks use their
slices

• All run-able tasks tracked in per-CPU runqueue data structure

• Two priority arrays (active, expired)

• Tasks indexed by priority

• When no more active, arrays are exchanged

• Poor response times for interactive processes

10/7/2019 CUNY | Brooklyn College 6

Linux “CFS” Scheduler

• Scheduling class

• Time quantum

• Virtual runtime

• Data structure for the “ready queue”

• Real-time scheduling

• Priority and nice value

10/7/2019 CUNY | Brooklyn College 7

Scheduling Class

• Each process has specific priority

• Scheduler picks highest priority task in
highest scheduling class

• Rather than quantum based on fixed
time allotments, based on proportion of
CPU time

• 2 scheduling classes included, others can
be added

1.default

2.real-time

10/7/2019 CUNY | Brooklyn College 8

Quantum

• Quantum calculated based on nice value
from -20 to +19

• Lower value is higher priority

• Calculates target latency – interval of time
during which task should run at least once

• Target latency can increase if say number of
active tasks increases

10/7/2019 CUNY | Brooklyn College 9

Virtual Runtime

• CFS scheduler maintains per task virtual
run time in variable vruntime

• Associated with decay factor based on
priority of task – lower priority is higher
decay rate

• Normal default priority (nice = 0) yields
virtual run time = actual run time

• To decide next task to run, scheduler
picks task with lowest virtual run time

10/7/2019 CUNY | Brooklyn College 10

“Fair” Scheduling: Example

• Two processes have the same nice values

• P1: I/O bound

• P2: CPU bound

• Observation

• I/O bound task run only for short periods before blocking for additional
I/O

• CPU-bound task will exhaust its time period whenever it has an
opportunity to run on a CPU

• Result

• P1 will smaller vruntime than P2

• P1 will have higher priority than P1

• When P1 is fulfilled an I/O request, P1 will empty P2 (P1 waited long
enough for I/O)

10/7/2019 CUNY | Brooklyn College 11

CFS Queue

• Runnable tasks (i.e., processes in the

Ready state) are placed in a balanced

binary search tree whose key is based on

the value of vruntime (a black-red tree).

10/7/2019 CUNY | Brooklyn College 12

Selecting a Task

• Takes O(n) time, where n is the number

of tasks

10/7/2019 CUNY | Brooklyn College 13

Linux Real-time Scheduling

• Real-time scheduling according to POSIX.1b

• Two real-time scheduling policies

• SCHED_FIFO or the SCHED_RR

• Real-time tasks have static priorities, ranging 0
~ 99 (vs. normal tasks 100 ~ 139)

• Normal tasks are assigned a priority based on
their nice values

• Nice value of -20 maps to global priority 100

• Nice value of +19 maps to priority 139

10/7/2019 CUNY | Brooklyn College 14

Linux Priority

10/7/2019 CUNY | Brooklyn College 15

Linux Load Balancing

• Linux supports load balancing, but is also

NUMA-aware.

• Scheduling domain is a set of CPU cores

that can be balanced against one another.

• Benefits?

• Domains are organized by what they share

(i.e. cache memory.)

• Goal is to keep threads from migrating between

domains.

10/7/2019 CUNY | Brooklyn College 16

10/7/2019 CUNY | Brooklyn College 17

Questions?

• Evolution of Linux scheduling

• Linux CFS scheduling

• Scheduling class

• Time quantum

• Virtual runtime

• Data structure for the “ready queue”

• Real-time scheduling

• Priority and nice value

10/7/2019 CUNY | Brooklyn College 18

Windows Scheduling

• In Windows kernel, the scheduler is

called “dispatcher”

• Windows uses priority-based preemptive

scheduling

• Highest-priority thread runs next

• Thread runs until (1) blocks, (2) time

quantum ends, or (3) preempted by higher-

priority thread

10/7/2019 CUNY | Brooklyn College 19

Windows Priority

• 32-level priority scheme

• Variable class is 1-15, real-time class

is 16-31

• Real-time threads can preempt non-real-time

• Priority 0 is memory-management thread

• Queue for each priority

• If no run-able thread, runs idle thread

10/7/2019 CUNY | Brooklyn College 20

Windows Priority Class

• Win32 API identifies several priority classes to which a process

can belong

• REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS,

ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CLASS,

BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS

• All are variable except REALTIME

• A thread within a given priority class has a relative priority

• TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL,

BELOW_NORMAL, LOWEST, IDLE

• Priority class and relative priority combine to give numeric

priority

• Base priority is NORMAL within the class

• If quantum expires, priority lowered, but never below base
10/7/2019 CUNY | Brooklyn College 21

Windows Priority

10/7/2019 CUNY | Brooklyn College 22

Variable Priority

• Priorities are variable except REALTIME

• If wait occurs, priority boosted depending on what
was waited for

• Foreground window given 3x priority boost

• Windows 7 added user-mode scheduling (UMS)

• Applications create and manage threads independent of
kernel

• For large number of threads, much more efficient

• UMS schedulers come from programming language
libraries like C++ Concurrent Runtime (ConcRT)
framework

10/7/2019 CUNY | Brooklyn College 23

Questions?

• Windows scheduling

• Priority

10/7/2019 CUNY | Brooklyn College 24

Solaris

• Priority-based scheduling

• Six classes available

• Time sharing (default) (TS)

• Interactive (IA)

• Real time (RT)

• System (SYS)

• Fair Share (FSS)

• Fixed priority (FP)

• Given thread can be in one class at a time

• Each class has its own scheduling algorithm

• Time sharing is multi-level feedback queue

• Loadable table configurable by sysadmin

10/7/2019 CUNY | Brooklyn College 25

10/7/2019 CUNY | Brooklyn College 26

10/7/2019 CUNY | Brooklyn College 27

Solaris Priority

• Scheduler converts class-specific priorities

into a per-thread global priority

• Solaris uses priority-based preemptive

scheduling

• Highest-priority thread runs next

• Thread runs until (1) blocks, (2) time quantum

ends, or (3) preempted by higher-priority thread

• Multiple threads at same priority selected via RR

10/7/2019 CUNY | Brooklyn College 28

Questions

• Solaris priority

10/7/2019 CUNY | Brooklyn College 29

