CISC 3320
CPU Scheduling:

Operating System
Examples

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Acknowledgement

* These slides are a revision of the slides
provided by the authors of the textbook
via the publisher of the textbook

Outline

* Operating Systems Examples
 Linux scheduling
« Windows scheduling

 Solaris scheduling

Linux Scheduling

* Prior to kernel version 2.5, Linux ran a
variation of standard UNIX scheduling
algorithm

* \Version 2.5 moved to constant order
O(1) scheduling time

» "Complete Fair Scheduler” since version
2.6.23

Linux Variation of Unix
Scheduling

* Not designhed with SMP systems in mind

* Did not adequately support systems with
multiple processors.

« In addition, it resulted in poor performance
for systems with a large number of runnable
processes.

Linux “O(1)” Scheduler

 Preemptive, priority based
« Two priority ranges: time-sharing and real-time
- Real-time range from 0 to 99 and nice value from 100 to 140

. M_aR into global priority with numerically lower values indicating
higher priority

« Higher priority gets larger quantum
« Task run-able as long as time left in time slice (active)

. IT_no time left (expired), not run-able until all other tasks use their
slices

« All run-able tasks tracked in per-CPU runqueue data structure
« Two priority arrays (active, expired)
« Tasks indexed by priority
« When no more active, arrays are exchanged

» Poor response times for interactive processes

Linux "CFS” Scheduler

« Scheduling class

 Time quantum

* Virtual runtime

« Data structure for the “ready queue”
» Real-time scheduling

* Priority and nice value

Scheduling Class

« Each process has specific priority

« Scheduler picks highest priority task in
highest scheduling class

« Rather than quantum based on fixed
time allotments, based on proportion of
CPU time

« 2 scheduling classes included, others can
be added

1.default
2.real-time

Quantum

« Quantum calculated based on nice value
from -20 to +19

« Lower value is higher priority

« Calculates target latency - interval of time
during which task should run at least once

« Target latency can increase if say number of
active tasks increases

10/7/2019 CUNY | Brooklyn College 9

Virtual Runtime

* CFS scheduler maintains per task virtual
run time in variable vruntime

« Associated with decay factor based on
priority of task — lower priority is higher
decay rate

 Normal default priority (nice = 0) yields
virtual run time = actual run time

« To decide next task to run, scheduler
picks task with lowest virtual run time

“Fair” Scheduling: Example

« Two processes have the same nice values
« P1:1/0 bound
« P2: CPU bound

« Observation

« I/O bound task run only for short periods before blocking for additional
I/0

« CPU-bound task will exhaust its time period whenever it has an
opportunity to run on a CPU

* Result
« P1 will smaller vruntime than P2
« P1 will have higher priority than P1

« When P1 is fulfilled an I/O request, P1 will empty P2 (P1 waited long
enough for I/0)

CFS Queue

« Runnable tasks (i.e., processes in the
Ready state) are placed in a balanced
ninary search tree whose key is based on
the value of vruntime (a black-red tree).

Selecting a Task

« Takes O(n) time, where n is the number
of tasks

task with the smallest
value of vruntime

smaller ; larger
value of vruntime

10/7/2019 CUNY | Brooklyn College 13

Linux Real-time Scheduling

« Real-time scheduling according to POSIX.1b

« Two real-time scheduling policies
« SCHED_FIFO or the SCHED_RR

« Real-time tasks have static priorities, ranging O
~ 99 (vs. normal tasks 100 ~ 139)

 Normal tasks are assigned a priority based on
their nice values

* Nice value of -20 maps to global priority 100
* Nice value of +19 maps to priority 139

Linux Priority

Real-Time Normal
99 100 139
s
Higher Lower
Priority
10/7/2019 CUNY | Brooklyn College 15

Linux Load Balancing

 Linux supports load balancing, but is also
NUMA-aware.

« Scheduling domain is a set of CPU cores
that can be balanced against one another.

 Benefits?

 Domains are organized by what they share
(i.e. cache memory.)

« Goal is to keep threads from migrating between
domains.

physical processor domain

(NUMA node)
domain, domain1
core,, core,

L2 L2
core, COIE 3

L3

10/7/2019

CUNY | Brooklyn College

17

Questions?

« Evolution of Linux scheduling

 Linux CFS scheduling
« Scheduling class
 Time quantum
 Virtual runtime
« Data structure for the “ready queue”
« Real-time scheduling

 Priority and nice value

Windows Scheduling

« In Windows kernel, the scheduler is
called “dispatcher”

« Windows uses priority-based preemptive
scheduling

» Highest-priority thread runs next

« Thread runs until (1) blocks, (2) time
gquantum ends, or (3) preempted by higher-
priority thread

Windows Priority

« 32-level priority scheme

- Variable class is 1-15, real-time class
Is 16-31

« Real-time threads can preempt non-real-time

* Priority O is memory-management thread
* Queue for each priority
« If no run-able thread, runs idle thread

10/7/2019 CUNY | Brooklyn College 20

Windows Priority Class

« Win32 API identifies several priority classes to which a process
can belong

« REALTIME_PRIORITY_CLASS, HIGH_PRIORITY_CLASS,
ABOVE_NORMAL_PRIORITY_CLASS,NORMAL_PRIORITY_CLASS,
BELOW_NORMAL_PRIORITY_CLASS, IDLE_PRIORITY_CLASS

« All are variable except REALTIME

« A thread within a given priority class has a relative priority

« TIME_CRITICAL, HIGHEST, ABOVE_NORMAL, NORMAL,
BELOW_NORMAL, LOWEST, IDLE

« Priority class and relative priority combine to give numeric
priority

« Base priority is NORMAL within the class

« If quantum expires, priority lowered, but never below base

Windows Priority

i high | 2o0ve, | normal | OO :odrli?)rity
time-critical 31 15 15 1 15 15
highest 26 15 12 10 8 6
above normal 25 14 11 9 7 5
normal 24 13 10 8 6 <
below normal 23 12 9 7 5 3
lowest 22 11 8 6 4 2
idle 16 1 1 1 1 1
10/7/2019 CUNY | Brooklyn College 22

Variable Priority

Priorities are variable except REALTIME

If wait occurs, priority boosted depending on what
was waited for

Foreground window given 3x priority boost
Windows 7 added user-mode scheduling (UMS)

« Applications create and manage threads independent of
kernel

* For large number of threads, much more efficient

« UMS schedulers come from programming language
libraries like C++ Concurrent Runtime (ConcRT)
framework

10/7/2019 CUNY | Brooklyn College

23

Questions?

« Windows scheduling

* Priority

Solaris

» Priority-based scheduling

« Six classes available

Time sharing (default) (TS)
Interactive (IA)

Real time (RT)

System (SYS)

Fair Share (FSS)

Fixed priority (FP)

« Given thread can be in one class at a time

« Each class has its own scheduling algorithm

« Time sharing is multi-level feedback queue

Loadable table configurable by sysadmin

time return
time quantum from
priority quantum expired sleep
0 200 0 50
5 200 0 50
10 160 0 51
15 160 5 51
20 120 10 52
25 120 15 52
30 80 20 53
35 80 25 54
40 40 30 55
45 40 35 56
50 40 40 58
55 40 45 58
59 20 49 59

10/7/2019

CUNY | Brooklyn College

26

10/7/2019

global

priority

highest

lowest

A

A

A

<

169

160
159

100
89

60
59

scheduling

interrupt threads

realtime (RT) threads

system (SYS) threads

fair share (FSS) threads
fixed priority (FX) threads
timeshare (TS) threads

interactive (IA) threads

CUNY | Brooklyn College

A

order

3

first

y last

27

Solaris Priority

« Scheduler converts class-specific priorities
into a per-thread global priority

« Solaris uses priority-based preemptive
scheduling

« Highest-priority thread runs next

« Thread runs until (1) blocks, (2) time quantum
ends, or (3) preempted by higher-priority thread

« Multiple threads at same priority selected via RR

Questions

« Solaris priority

