
CISC 3320 MW3

Thread and Multiprocessor

Scheduling
Hui Chen

Department of Computer & Information Science

CUNY Brooklyn College

10/7/2019 1CUNY | Brooklyn College

Acknowledgement

• These slides are a revision of the slides

provided by the authors of the textbook

via the publisher of the textbook.

10/7/2019 CUNY | Brooklyn College 2

Outline

• Thread Scheduling

• Multi-Processor Scheduling

• Multicore CPUs, multithreaded cores, NUMA

systems, heterogeneous multiprocessing

• Memory stall, multithread Processor, and

scheduling

• Load balancing, processor affinity, and cache

10/7/2019 CUNY | Brooklyn College 3

Thread Scheduling

• Distinction between user-level and

kernel-level threads

• When threads supported, threads

scheduled, not processes

• User and kernel threads

• One to one

• Many to one

• Many to many

10/7/2019 CUNY | Brooklyn College 4

User and Kernel Threads

• Many-to-one and many-to-many models,
thread library schedules user-level threads
to run on LWP (light-weight process)

• Known as process-contention scope (PCS)
since scheduling competition is within the
process

• Typically done via priority set by programmer

• Kernel thread scheduled onto available CPU
is system-contention scope (SCS) –
competition among all threads in system

10/7/2019 CUNY | Brooklyn College 5

Example: Pthread Scheduling

• API allows specifying either PCS or SCS
during thread creation

• PTHREAD_SCOPE_PROCESS schedules threads
using PCS scheduling

• PTHREAD_SCOPE_SYSTEM schedules threads
using SCS scheduling

• Can be limited by OS

• Linux supports only PTHREAD_SCOPE_SYSTEM

• Open Solaris supports both before Solaris 9, but
makes no distinction between the two since
Solaris 9

10/7/2019 CUNY | Brooklyn College 6

Pthread Scheduling API

• pthread_attr_getscope

• pthread_attr_setscope

10/7/2019 CUNY | Brooklyn College 7

Questions?

• Thread scheduling

• PCS and SCS

• Pthread example

10/7/2019 CUNY | Brooklyn College 8

Multiprocessor Scheduling

• CPU scheduling more complex when

multiple CPUs are available

• Multiprocess may be any one of the

following architectures:

• Multicore CPUs

• Multithreaded cores

• NUMA systems

• Heterogeneous multiprocessing

10/7/2019 CUNY | Brooklyn College 9

Symmetric Multiprocessing

• Symmetric multiprocessing (SMP) is

where each processor is self scheduling.

1. All threads may be in a common ready

queue

2. Each processor may have its own private

queue of threads

10/7/2019 CUNY | Brooklyn College 10

10/7/2019 CUNY | Brooklyn College 11

Multicore Processors

• Recent trend to place multiple processor

cores on same physical chip

• Faster and consumes less power

10/7/2019 CUNY | Brooklyn College 12

Memory Stall and Multithread

Processor
• Memory stall

• e.g., compare these two instructions

• mov edx, eax

• mov (1000), eax

• Observation

• memory is much slower than registers

• In the second instruction above, the
processor must wait significant amount of
data for the data to be available

10/7/2019 CUNY | Brooklyn College 13

Memory Stall

10/7/2019 CUNY | Brooklyn College 14

Addressing Memory Stall

• Takes advantage of memory stall to make
progress on another (hardware) thread while
memory retrieve happens

• Many recent hardware designs have
implemented multithreaded processing cores

• Two (or more) hardware threads are assigned to each
core.

• In this way, if one hardware thread stalls while waiting
for memory, the core can switch to another thread.

• Called chip multithreading (CMT)

• Intel calls it “hyperthreading”

10/7/2019 CUNY | Brooklyn College 15

Chip Multithreading

• Each core has > 1 hardware threads.

• If one thread has a memory stall, switch

to another thread!

• Each (hardware) thread appears to be a

(logical) CPU to an operating system

10/7/2019 CUNY | Brooklyn College 16

Multithreaded Multicore

System: Example
• On a quad-core

system with 2

hardware threads

per core, the

operating system

sees 8 logical

processors.

10/7/2019 CUNY | Brooklyn College 17

Multithreaded Multicore

System: Scheduling
• Two levels of scheduling:

• The operating system deciding which

software thread to run on a logical CPU

• How each core decides which hardware

thread to run on the physical core.

10/7/2019 CUNY | Brooklyn College 18

10/7/2019 CUNY | Brooklyn College 19

Load Balancing

• If SMP, need to keep all CPUs loaded for
efficiency

• Load balancing attempts to keep workload
evenly distributed

• Push migration

• periodic task checks load on each processor, and if
found pushes task from overloaded CPU to other CPUs

• Pull migration

• idle processors pulls waiting task from busy processor

10/7/2019 CUNY | Brooklyn College 20

Processor Affinity

• A thread having affinity for a processor

(i.e. “processor affinity”)

• When a thread has been running on one

processor, the cache contents of that

processor stores the memory accesses by

that thread.

10/7/2019 CUNY | Brooklyn College 21

Processor Cache and

Scheduling
• If a thread is scheduled on a new processor,
that processor's cache must be repopulated.

• With private, per-processor ready queues, a
thread is always scheduled on the same
processor and can therefore benefit from the
contents of a warm cache.

• If the thread migrates to another processor, e.g.,
due to load balancing. The contents of cache
memory must be invalidated for the first
processor, and the cache for the second
processor must be repopulated.

10/7/2019 CUNY | Brooklyn College 22

Setting Processor Affinity

• Soft affinity

• the operating system attempts to keep a thread
running on the same processor, but no guarantees.

• Hard affinity

• allows a process to specify a set of processors it may
run on.

• Example

• Linux implements both soft affinity

• The sched_setaffinity() system call supports hard
affinity by allowing a thread to specify the set of CPUs
on which it is eligible to run.

10/7/2019 CUNY | Brooklyn College 23

NUMA and CPU Scheduling

• Non-uniform memory access

• Fast and slow memory access

• If the operating system is NUMA-aware,

it will assign memory closes to the CPU

the thread is running on.

10/7/2019 CUNY | Brooklyn College 24

10/7/2019 CUNY | Brooklyn College 25

Questions?

• Multiprocessor scheduling

• Two level scheduling for chip

multithreading

• Loading balancing

• Processor affinity, cache, and scheduling

• NUMA and scheduling

10/7/2019 CUNY | Brooklyn College 26

Heterogeneous

Multiprocessing
• Symmetric multiprocessing (SMP)

• All processors are identical in terms of their

capabilities

• Heterogenous multiprocessing (HMP)

• Although running the same instructors,

processors may vary by their clock speed or

power management

10/7/2019 CUNY | Brooklyn College 27

HMP Example

• ARM processor's big Little architecture

• higher-performance big cores and many energy

efficient LITTLE cores

• Big cores consume greater energy and therefore

should only be used for short periods of time.

• Likewise, little cores use less energy and can

therefore be used for longer periods.

• CPU scheduling should take these into

consideration

10/7/2019 CUNY | Brooklyn College 28

Questions?

• Concept of HMP

• Scheduling for HMP

10/7/2019 CUNY | Brooklyn College 29

