CISC 3320 Basic Concepts about CPU Scheduling

Hui Chen

Department of Computer & Information Science
CUNY Brooklyn College

Acknowledgement

 These slides are a revision of the slides by the authors of the textbook

Outline

- CPU-I/O burst cycle
- Multiprogramming and benefits
- Analyzing multiprogramming: a simple model
- Concept of CPU scheduler
- Dispatcher and dispatch latency

CPU-I/O Burst Cycle

- CPU-I/O Burst Cycle
 - Process execution consists of a cycle of CPU execution and I/O wait
- CPU burst followed by I/O burst

load store add store read from file

CPU burst

wait for I/O

I/O burst

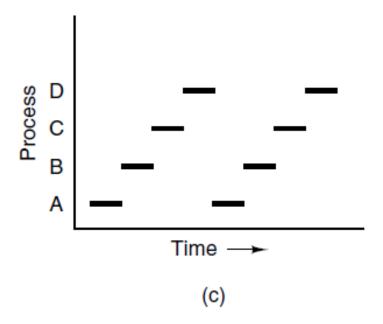
store increment index write to file

CPU burst

wait for I/O

I/O burst

load store add store read from file


CPU burst

wait for I/O

I/O burst

Multiprogramming

 Process rapidly switching back and forth to share the CPU time

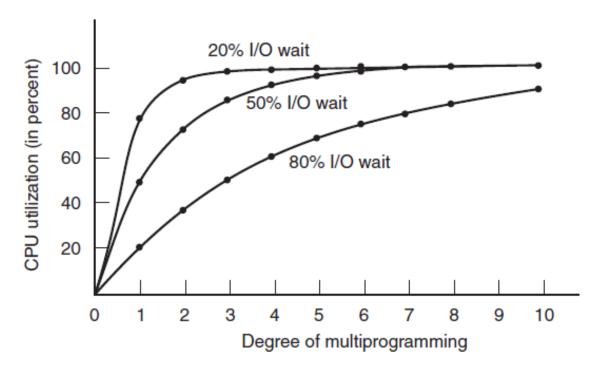
 In a single processor core system, only one program is active at once (pseudoparallelsim) [Figure 2-1(c) in Tanenbaum & Bos, 2014]

Benefit of Multiprogramming

- CPU utilization can be improved due to multiprogramming
- Intuition
 - When one process is waiting for I/O, another can be scheduled to CPU
- How much do we benefit from multiprogramming?

Simple Multiprogramming Model

Assumptions


- n processes in the main memory;
- a process spends a fraction p of its waiting for
 I/O independent of the others

Analysis

- CPU is idle when all processes are waiting for I/O
- The probability that all n processes waiting for I/O is \mathbf{p}^n
- CPU Utilization = $1 p^n$

Result from the Simple Modeling Multiprogramming

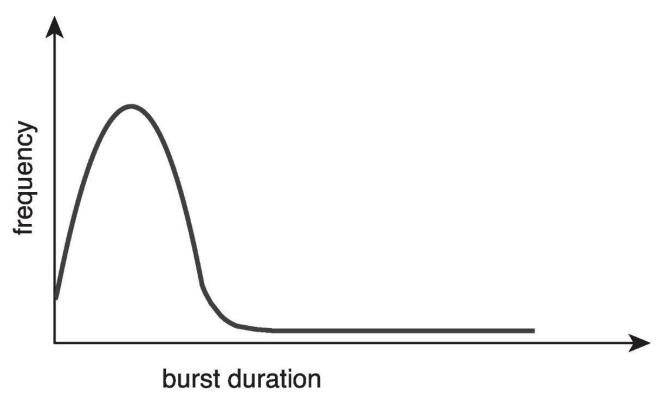
CPU utilization

• CPU utilization [Figure 2-6 in Tanenbaum & Bos, 2014]

Questions

- Review the concepts of multiprogramming and process
- Benefit of multiprogramming
- Model and simulation of multiprogramming
- Examples of simulation and graphing
- What are the assumptions in the model?

What are the assumptions in the model?


- n processes in the main memory and treated equally
- A process spends a fraction p of its waiting for I/O independent of the others

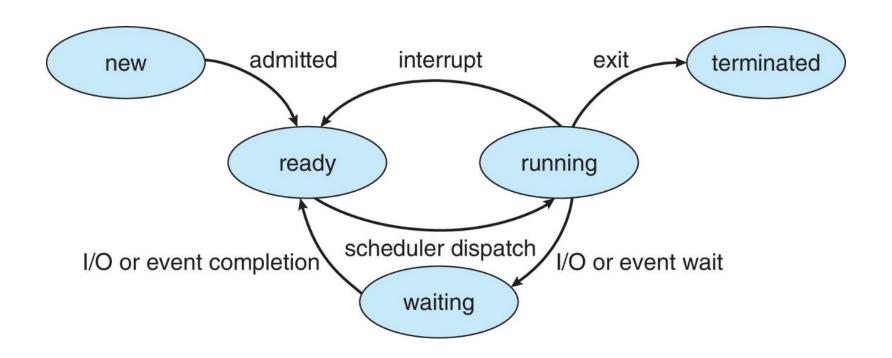
CPU Bursts Differ

CPU burst distribution is of main concern

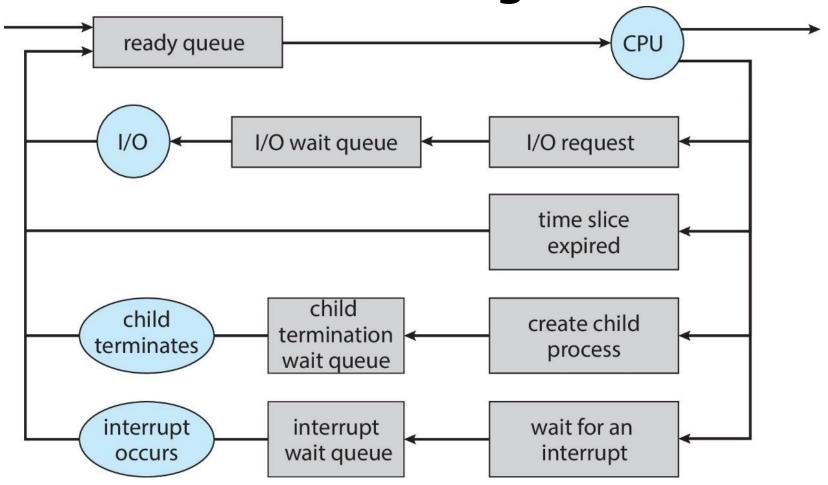
Histogram of CPU-burst Times

 Large number of short bursts, small number of longer bursts

CPU Scheduler: Intuition


 Select processes to run on CPU to take advantage of the understanding of the CPU bursts distribution

CPU Scheduler


 The CPU scheduler selects from among the processes in <u>ready queue</u>, and allocates the a CPU core to one of them

CPU Scheduler: When, From and To?

Review: Process States

Review: Representation of Process Scheduling

CPU Scheduler: When, From and To?

- CPU scheduling decisions <u>may</u> take place when a process:
 - Switches from running to waiting state
 - Switches from running to ready state
 - Switches from waiting to ready
 - Terminates

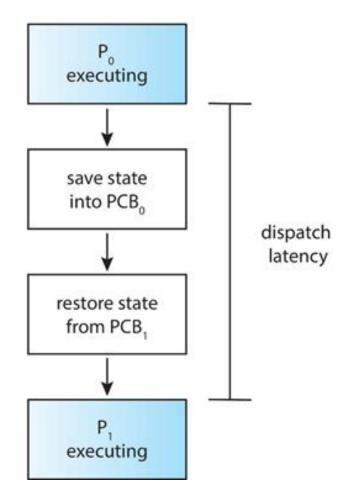
Preemptive and Nonpreemptive Scheduling

- Scheduling under the following is nonpreemptive
 - Switches from running to waiting state
 - Terminates
- All other scheduling is preemptive, such as,
 - Switches from running to ready state
 - Switches from waiting to ready
- For preemptive scheduling,
 - Consider access to shared data
 - Consider preemption while in kernel mode
 - Consider interrupts occurring during crucial OS activities

Ready Queue

Queue may be ordered in various ways

Questions?


- CPU scheduler
- Preemptive and nonpreemptive scheduling

Dispatcher

- Dispatcher module gives control of the CPU to the process selected by the shortterm scheduler; this involves:
 - switching context
 - switching to user mode
 - jumping to the proper location in the user program to restart that program

Dispatch Latency

 Time it takes for the dispatcher to stop one process and start another running

Questions?

Dispatcher and dispatcher latency