CISC 3320
CPU Scheduling Criteria

and Algorithms

Hui Chen
Department of Computer & Information Science
CUNY Brooklyn College

Acknowledgement

» These slides are a revision of the slides
by the authors of the textbook

Outline

« Scheduling Criteria
« Scheduling Algorithms

Scheduling Criteria

« CPU utilization - keep the CPU as busy as possible

 Throughput - # of processes that complete their
execution per time unit

 Turnaround time - amount of time to execute a
particular process, i.e., the interval from the time of
submission of a process to the time of completion is the
turnaround time.

- Waiting time - amount of time a process has been
waiting in the ready queue

« Response time - amount of time it takes from when a
request was submitted until the first response is
produced, not output (for time-sharing environment)

Scheduling Algorithm
Optimization Criteria

« Maximize CPU utilization
« Maximize throughput

« Minimize turnaround time
* Minimize waiting time
 Minimize response time

« Q: Can we optimize for more than one
criteria?

Questions?

« CPU scheduling criteria?

« Can we optimize all of them? How about
different systems, such as, batch
system, interactive system, and real time
system?

Scheduling Algorithms

 First-Come, First-Served (FCFS)
Scheduling

» Shortest-Job-First (SJF) Scheduling

« Preemptive shortest-remaining-time-first
* Round Robin (RR)

* Priority Scheduling
 Priority Scheduling with Round-Robin

First- Come, First-Served
(FCFS) Scheduling: Example

Process Burst Time
P, 24
P, 3
P, 3

 Suppose that the processes arrive in the order: P, , P, , P;
* The Gantt Chart for the schedule is:

P P

1 2 3

« Waiting time for P, =0; P, = 24; P;= 27
* Average waiting time: (0 +24 +27)/3 =17

First- Come, First-Served
(FCFS) Scheduling: Example

Suppose that the processes arrive in the order:
P2, P3Py
* The Gantt chart for the schedule is:

 Waiting time for P;=6,;P,=0.P;=3

+ Average waiting time: (6+0+3)/3=3

* Much better than previous case

 Convoy effect - short process behind long process

* Consider one CPU-bound and many I/O-bound processes

Shortest-Job-First (SJF)
Scheduling

« Associate with each process the length of
its next CPU burst

« Use these lengths to schedule the process
with the shortest time

« SJF is optimal - gives minimum average
waiting time for a given set of processes

« The difficulty is knowing the length of the
next CPU request

 Could ask the user

Example of SJF

Process

« SJF scheduling chart

Burst Time

6

8
7
3

P

4

« Average waiting time=(3+16+9+0)/4=7

16

24

SJF: Assumptions

* The length of the next CPU burst is
known.

« But, how do we determine length of next
CPU burst?

Determining Length of Next
CPU Burst

* Can only estimate the length - should be similar to the
previous one

* Then pick process with shortest predicted next CPU burst

* Can be done by using the length of previous CPU bursts,
using exponential averaging

1. t, =actual length of n" CPU burst

2. 7,1 =Ppredicted value for the next CPU burst
3. a,0<5a<1

4. Define: 1,.,=at,+(1-war,.

« Commonly, o set to 3

* Preemptive version called shortest-remaining-time-first

Prediction of the Length of
the Next CPU Burst

10/07/2019 CUNY | Brooklyn College

14

Examples of Exponential
Averaging

a =0
T+l = T
« Recent history does not count
« =1
Ty = O T,
* Only the actual last CPU burst counts
If we expand the formula, we get:
Tzt Hl-a)at, 1+ ..
Hl-aYat, ;+..

#1- o)

Since both o and (1 - o) are less than or equal to 1, each
successive term has less weight than its predecessor

Example of Shortest-remaining-time-first

« Now we add the concepts of varying arrival times and preemption to the
analysis

Process Arrival Time Burst Time
P, 0 8

1 4
P, 2 9
3 5

* Preemptive SJF Gantt Chart

P| P P

1 2 4

« Average waiting time = [(10-1)+(1-1)+(17-2)+(5-3)]/4 = 26/4 = 6.5
msec

Round Robin (RR)

« Each process gets a small unit of CPU time (time
quantum @), usually 10-100 milliseconds. After this time
has elapsed, the process is preempted and added to the
end of the ready queue.

« If there are n processes in the ready queue and the time
quantum is g, then each process gets 1/n of the CPU time
in chunks of at most g time units at once. No process
waits more than (n-1)g time units.

« Timer interrupts every quantum to schedule next process

« Performance

« g large = FIFO

g small = g must be large with respect to context switch,
otherwise overhead is too high

Example of RR with Time
Quantum = 4

Process Burst Time

P, 24
P, 3
P, 3

 The Gantt chart is:

Pl I:)2 P3 Pl I:)l I:)l Pl

Estimating Metrics

« Assuming all 3 processes are in ready queue at time O
« Average waiting time

P, waits (0 -0) + (10 - 4) = 6; P, waits (4 - 0) = 4; P; waits (7 - 0) =
7;and (6 +4 +7)/3=17/3

- Average response time

« P, responses after (0 - 0) = 0; P, responses after (4 - 0) = 4; P;
responses after (7-0)=7;and (0+ 4+ 7)/3 =11/3

« Average turnaround time

« P, completes after submission (4 - 0) = 4; P, responses after (7 - 0) =
7; P5 responses after (30 - 0) = 30; and (4 + 7 + 30)/3 = 41/3

Comparing with SJF

« Exercises for you

« If we use SJF instead, what are the metrics
(average waiting time, average response time,
average turnaround time)?

« What if we choose different time quantum
(shorter or longer) for RR?

 Typically, RR has higher average turnaround
and higher waiting time than SJF, but better

response

Time Quantum (g) and

Context Switch Time

« g should be large compared to context
switch time

« g usually 10ms to 100ms, context switch
< 10 usec

Time Quantum and Context
Switch Time

process time = 10 quantum context
switches
12 0
0 10
6 1
0 6 10
1 9

10/07/2019 CUNY | Brooklyn College 22

Turnaround Time Varies With

The Time Quantum

125 8

12.0 |8

115§

11.01

10.5

10.0

average turnaround time

05§

90 @

process | time
P, 6
P 3
P 1
P, 7

| | | | 1 |
1 2 3 4 B ® 7
time quantum

80% of CPU bursts
should be shorter
than q

Questions?

« System design objectives and CPU
scheduling criteria

« Comparing RR and SJF

« Q: can we always optimize for multiple
scheduling criteria?

Priority Scheduling

A priority number (integer) is associated with each process

The CPU is allocated to the process with the highest priority
(smallest integer = highest priority)

* Preemptive

* Nonpreemptive

SJF is priority scheduling where priority is the inverse of
predicted next CPU burst time

Problem = Starvation - low priority processes may never execute

Solution = Aging - as time progresses increase the priority of
the process

Example of Priority
Scheduling

Process Burst Time Priority
P, 10 3
P, 1 1
P, 2 4
P, 1 5
Ps 5 2

* Priority scheduling Gantt Chart

P2 5 P1

0o 1 6 16

+ Average waiting time = 8.2 msec

Priority Scheduling with

Round-Robin

Process

Burst Time Priority
4 3
5 2
8 2
7 1
3 3

 Run the process with the highest priority. Processes with the
same priority run round-robin

« Gantt Chart wit 2 ms time quantum

P

4

P

2

P

3

P

2

P

3

P

2

7

9

11

13

15

16

Priority Scheduling: Multilevel

Queue
« With priority scheduling, have separate
gqueues for each priority.

» Schedule the process in the highest-
priority queue!

Multilevel Queue

priority =0

priority =1

priority = 2

priority =n

10/07/2019

T, T, T, 3
T Te T,
Ty T Tio 11
©
©
@
T iIs T

CUNY | Brooklyn College

29

Process Type and Multilevel

Queue

« Example: Prioritization based upon
process type

highest priority
> real-time processes
e system processes
g interactive processes
B batch processes

lowest priority

Multilevel Feedback Queue

A process can move between the various
queues; aging can be implemented this way

Multilevel-feedback-queue scheduler defined by
the following parameters:

 number of queues

« scheduling algorithms for each queue

 method used to determine when to upgrade a process
« method used to determine when to demote a process

 method used to determine which queue a process will
enter when that process needs service

Example of Multilevel

Feedback Queue

 Three queues:

Q, - RR with time quantum 8 millisec

« Scheduling

Q; - RR time quantum 16 milliseconc

Q, - FCFS

Y

quantum = 8

\ 4

\ 4

quantum = 16

Y

FCFS

\ 4

A new job enters queue Q, which is served FCFS

When it gains CPU, job receives 8 milliseconds

If it does not finish in 8 milliseconds, job is moved to queue Q,

At Q, job is again served FCFS and receives 16 additional milliseconds

If it still does not complete, it is preempted and moved to queue Q,

\ 4

Questions?

 Various CPU scheduling algorithms

« Computing scheduling criteria
* Determine CPU burst time

 Different types of queues

