
Signed Integers

Hui Chen a

aCUNY Brooklyn College, Brooklyn, NY, USA

September 6, 2023

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 1 / 55



Outline

1 Lesson Objectives

2 Signed Integer

3 Signed Magnitude

4 Complement Signed Integers
One’s Complement
Two’s Complement
Excess-M Representation
Comparison

5 Multiplication and Division

6 Overflow Detection

7 Summary and Q&A

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 2 / 55



Acknowledgement

The content of most slides come from the authors of the textbook:

Null, Linda, & Lobur, Julia (2018). The essentials of computer
organization and architecture (5th ed.). Jones & Bartlett Learning.

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 3 / 55



Lesson Objectives

Table of Contents

1 Lesson Objectives

2 Signed Integer

3 Signed Magnitude

4 Complement Signed Integers
One’s Complement
Two’s Complement
Excess-M Representation
Comparison

5 Multiplication and Division

6 Overflow Detection

7 Summary and Q&A

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 4 / 55



Lesson Objectives

Lesson Objectives

Students are expected to be able to
1. describe the fundamentals of numerical data representation and

manipulation in digital computers;
2. convert between various radix systems;
3. convert and perform arithmetic in signed integer representations;
4. explain how errors can occur in computations because of overflow and

truncation;
5. express floating numbers in floating-point representation;
6. recognize the most popular character codes; and
7. describe the concepts of error detecting and correcting codes.

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 5 / 55



Signed Integer

Table of Contents

1 Lesson Objectives

2 Signed Integer

3 Signed Magnitude

4 Complement Signed Integers
One’s Complement
Two’s Complement
Excess-M Representation
Comparison

5 Multiplication and Division

6 Overflow Detection

7 Summary and Q&A

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 6 / 55



Signed Integer

Signed Integer

Integers can be signed (indicating positive or negative numbers)
▶ How to we represent signed integers?
▶ In general, allocate the high-order bit to indicate the sign of a

number.
▶ The high-order bit is typically on the most significant (often leftmost)

bit.
▶ Example: 0 is used to indicate a positive number; 1 indicates a

negative number.
▶ The remaining bits contain the value of the number that can be

interpreted in different ways

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 7 / 55



Signed Integer

Signed Integer Representations

Three ways:
▶ Signed magnitude
▶ One’s complement
▶ Two’s complement
▶ Excess-M representation (offset binary representation)

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 8 / 55



Signed Magnitude

Table of Contents

1 Lesson Objectives

2 Signed Integer

3 Signed Magnitude

4 Complement Signed Integers
One’s Complement
Two’s Complement
Excess-M Representation
Comparison

5 Multiplication and Division

6 Overflow Detection

7 Summary and Q&A

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 9 / 55



Signed Magnitude

Signed Magnitude Representation

In an 8-bit word, signed magnitude representation places the absolute
value of the number in the 7 bits to the right of the sign bit.

+3: 0000 0011
-3: 1000 0011

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 10 / 55



Signed Magnitude

Signed Magnitude: Arithmetic Operations

On signed magnitude numbers, they are carried out in much the same way
as humans carry out pencil and paper arithmetic.

Humans often ignore the signs of the operands while performing a
calculation, applying the appropriate sign after the calculation is complete.

▶ to discuss binary addition
▶ how about binary subtraction?

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 11 / 55



Signed Magnitude

Binary Addition

Consider the four rules (all numbers are binary):

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

How about multiple-digit numbers?

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 12 / 55



Signed Magnitude

Binary Addition: Example 1

Using signed magnitude binary arithmetic, find the sum of 7510 and 4610.

1. convert 75 and 46 to binary, and arrange as a sum, but separate the
(positive) sign bits from the magnitude bits; and

2. find the sum starting with the rightmost bit and work left, note and
add the carries

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 13 / 55



Signed Magnitude

Binary Addition: Example 1

Using signed magnitude binary arithmetic, find the sum of 7510 and 4610.

0 100 1011
0 + 010 1110
------------
0 111 1001

The result is 011110012 = 12110

In this example, we were careful to pick two values whose sum would fit
into 7 bits. What if that is not the case?

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 14 / 55



Signed Magnitude

Binary Addition: Example 2

Using signed magnitude binary arithmetic, find the sum of 10710 and 4610.

1 (carry bit)
0 110 1011
0 + 010 1110
------------
0 ? 011 1001

We see that the carry from the seventh bit overflows and is discarded,
giving us the erroneous result: 001110012 = 2510.

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 15 / 55



Signed Magnitude

Binary Addition: Example 3

Using signed magnitude binary arithmetic, find the sum of −4610 and
−2510 (the two numbers have an identical sign).

Because the signs are the same, all we do is add the numbers and supply
the negative sign when we are done.

1 010 1110
1 + 001 1001
------------
1 100 0111

The result is 110001112 = −7110.

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 16 / 55



Signed Magnitude

Mixed Sign Addition (or Subtraction)

It is done the similar way, but note:
▶ The sign of the result gets the sign of the number that is larger.
▶ Sometimes, we have to “borrow” from the higher order bits.

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 17 / 55



Signed Magnitude

Mixed Sign Addition (or Subtraction): Example 4

Example: Using signed magnitude binary arithmetic, find the sum of 4610
and −2510.

0 0 1 0 1 1 1 0
1 + 0 0 1 1 0 0 1
-------------------
0 0 0 1 0 1 0 1

Note the “borrows” from the second and sixth bits.

The result is 000101012 = 2110.

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 18 / 55



Signed Magnitude

Signed Magnitude Representation: Summary

▶ Signed magnitude representation is to understand, but it requires
complex computer hardware (such as keep tracking of carries and
borrows)

▶ It allows two different representations for zero: positive zero and
negative zero such as

000000002 = +0 (1)
100000002 = −0 (2)

▶ To avoid these problems, computers systems actually employ
complement systems for numeric value representation.

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 19 / 55



Complement Signed Integers

Table of Contents

1 Lesson Objectives

2 Signed Integer

3 Signed Magnitude

4 Complement Signed Integers
One’s Complement
Two’s Complement
Excess-M Representation
Comparison

5 Multiplication and Division

6 Overflow Detection

7 Summary and Q&A

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 20 / 55



Complement Signed Integers

Complement Number Systems

Negative values are represented by some difference between a number and
its base (i.e., represented by a complement).

For example, the diminished radix complement of a non-zero number N in
base r with d digits is (rd − 1) − N

In the binary system, this gives us one’s complement. It amounts to little
more than flipping the bits of a binary number.

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 21 / 55



Complement Signed Integers One’s Complement

One’s Complement

One’s complement a non-zero number N with d digits is

(2d − 1) − N

with which, we represent negative numbers

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 22 / 55



Complement Signed Integers One’s Complement

One’s Complement: Example

For example, using 8-bit one’s complement representation:

+3 = 00000011
-3 = 11111100

How?

(28 − 1) − 3 = 255 − 3 = 252

and

25210 = 111111002

which represents −310.

This can be obtained by flipping every bit of 000000112!
H. Chen (CUNY-BC) Computer Architecture September 6, 2023 23 / 55



Complement Signed Integers One’s Complement

One’s Complement: Advantages

In one’s complement representation, as with signed magnitude, negative
values are indicated by a 1 in the high order bit.

However, complement systems are useful because they eliminate the need
for subtraction.

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 24 / 55



Complement Signed Integers One’s Complement

One’s Complement: Arithmetic Operations

Using one’s complement binary arithmetic, find the sum of 4810 and
−1910.

1. convert the numbers to binary signed integer
2. add the two numbers
3. with one’s complement addition, the carry bit is “carried around” and

added to the sum

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 25 / 55



Complement Signed Integers One’s Complement

One’s Complement: Arithmetic Operations

Using one’s complement binary arithmetic, find the sum of 4810 and
−1910.

4810 = 001100002 and 1910 = 000100112. Then −19’s one’s complement
is 111011002.

0 0 1 1 0 0 0 0
+ 1 1 1 0 1 1 0 0
-------------------

0 0 0 1 1 1 0 0
+ 1 (carry bit)
-------------------

0 0 0 1 1 1 0 1

The result is 000111012 = 2910

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 26 / 55



Complement Signed Integers One’s Complement

One’s Complement: Summary

▶ One’s complement is simpler to implement than signed magnitude
despite that the “end carry around” adds some complexity.

▶ But it still has the disadvantage of having two different
representations for zero: positive zero and negative zero, e.g.,
0000 0000 = +0
1111 1111 = -0

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 27 / 55



Complement Signed Integers Two’s Complement

Two’s Complement

Two’s complement overcomes the problems of positive and negative 0’s.

Considering the radix complement of a numbering system where the radix
complement of a non-zero number N in base r with d digits is rd − N .

When the base is 2, we have Two’s complement 2d − N for d digits.

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 28 / 55



Complement Signed Integers Two’s Complement

Two’s Complement Representation

To express a value in two’s complement representation:
▶ If the number is positive, just convert it to binary.
▶ If the number is negative, find the one’s complement of the number

(easy way: flipping bits) and then add 1.
Example: representing -3 in Two’s complement of 8 bits:

1. in 8-bit binary, 310 = 000000112

2. -3’s one’s complement representation of 8 bits is: 111111002

3. Adding 1 to it, we have 111111012.

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 29 / 55



Complement Signed Integers Two’s Complement

Two’s Complement: Arithmetic

▶ With two’s complement arithmetic, all we do is add our two binary
numbers.

▶ Just discard any carries emitting from the high order bit if any.

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 30 / 55



Complement Signed Integers Two’s Complement

Two’s Complement: Example

For 8-bit binary numbering system, using Two’s complement binary
arithmetic, find the sum of 48 and -19.

We note: 4810 = 001100002 and −1910 = 111011012 in 8-bit Two’s
complements.

0011 0000
+ 1110 1101

------------
1 0001 1101
^
+--- discard any carry-out bit

The result is 4810 − 1910 = 000111012 = 2910

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 31 / 55



Complement Signed Integers Excess-M Representation

Excess-M Representation

Also called offset binary representation is a method to represent signed
integers using unsigned binary values.

▶ 0 and 2M: an unsigned binary integer M (called the bias) represents
the value 0, while all zeroes in the bit pattern represents the integer
2M

▶ The integer is interpreted as positive or negative depending on where
it falls in the range.

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 32 / 55



Complement Signed Integers Excess-M Representation

Excess-M Representation: Representing Signed Integers

If n bits are used for the binary representation, we typically select the bias
in such a manner that we split the range equally.

So we choose a bias of 2n−1 − 1.

Example, if we were using 4-bit representation, the bias should be
M = 24−1 − 1 = 7, which we use to represent 0.

Then any unsigned integer less than M represents a negative number while
any unsigned integer greater than M a positive number.

The unsigned binary value for a signed integer using excess-M
representation is determined simply by adding M to that integer.

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 33 / 55



Complement Signed Integers Excess-M Representation

Excess-M Representation: Example 1

For example, let’s consider excess-7 representation for 4 bit numbers where
M = 2(4 − 1) − 1
▶ the integer 010 is represented as 010 + 710 = 710 = 01112.
▶ The integer 310 is represented as 310 + 710 = 1010 = 10102.
▶ The integer −710 is represented as −710 + 710 = 010 = 00002.

To find the decimal value of the excess-7 binary number 11112 subtract 7:
11112 = 1510 and 15 – 7 = 8; thus 11112, in excess-7 is + 810.

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 34 / 55



Complement Signed Integers Excess-M Representation

Excess-M Representation: Example 2

For example, let’s consider excess-7 representation for 4 bit numbers where
M = 2(4 − 1) − 1. Given the values, find the decimal values?

Convert to decimal and subtract M from the representation.

11112 − 710 = 1510 − 710 = 810

(3)

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 35 / 55



Complement Signed Integers Comparison

Comparison of the 4 Representations

Assuming 8-bit binary numbers

Decimal Binary of Signed One’s Two’s Excess-127
abs(·) Magnitude Complement Complement

2 0000 0010 0000 0010 0000 0010 0000 0010 1000 0001
-2 0000 0010 1000 0010 1111 1101 1111 1110 0111 1101

100 0110 0100 0110 0100 0110 0100 0110 0100 1110 0011
-100 0110 0100 1110 0100 1001 1011 1001 1100 0001 1011

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 36 / 55



Multiplication and Division

Table of Contents

1 Lesson Objectives

2 Signed Integer

3 Signed Magnitude

4 Complement Signed Integers
One’s Complement
Two’s Complement
Excess-M Representation
Comparison

5 Multiplication and Division

6 Overflow Detection

7 Summary and Q&A

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 37 / 55



Multiplication and Division

Booth’s Algorithm

Idea: To do multiplication, replace arithmetic operations with bit shifting
to the extent possible.
▶ Assume a mythical “0” starting multiplier bit, process one bit on the

multiplier at each step
▶ Two bits patters:
▶ 10: shift and subtract, i.e., if the current multiplier bit is 1 and the

preceding bit was 0, shift and subtract the multiplicand from the
product

▶ 01: shift and add, i.e., if the current multiplier bit is 0 and the
preceding bit was 1, shift and add the multiplicand to the product

▶ 00: shift only, i.e., if we have a 00 pair, we simply shift.
▶ 11: shift only, i.e., if we have a 11 pair, we simply shift.

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 38 / 55



Multiplication and Division

Booth’s Algorithm: (Small) Example 1

Compute 3 × 6 using Booth’s Algorithm: 4 bits × 4 bits, and consider 8
bits product. In the following 3: multiplicand, 6: multiplier

Mythical
0011

x 0110 0
------------

+ 0000 shift due to 00 in 011[00] including mythical 0
- 0011 shift and subtract due to 01[10]0

+ 0000 shift due to 0[11]00
+ 0011 shift and add [01]100

------------
00010010

The result = 310 × 610 = 000100102 = 1810
H. Chen (CUNY-BC) Computer Architecture September 6, 2023 39 / 55



Multiplication and Division

Booth’s Algorithm: (Large) Example 2

00110101
x 01111110
+ 0000000000000000 due to 0111111[00] (mythical 0 added)
+ 111111111001011 due to 011111[10]0
+ 00000000000000 due to 01111[11]00
+ 0000000000000 due to 0111[11]100
+ 000000000000 due to 011[11]1100
+ 00000000000 due to 01[11]11100
+ 0000000000 due to 0[11]111100
+ 000110101 due to [01]1111100
------------------
10001101000010110

In the above −00110101 is in two’s complement so that we can use “+”
instead

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 40 / 55



Multiplication and Division

Multiplication and Division and Shift Operations

We can do binary multiplication and division by 2 very easily using an
arithmetic shift operation.

A left arithmetic shift inserts a 0 in for the rightmost bit and shifts
everything else left one bit; in effect, it multiplies by 2.

A right arithmetic shift shifts everything one bit to the right, but copies
the sign bit; it divides by 2.

Let’s look at some examples.

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 41 / 55



Multiplication and Division

Shift: Example 1

Multiply the value 11 (expressed using 8-bit signed two’s complement
representation) by 2.

We start with the binary value for 11:

00001011(+11)

We shift left one place, resulting in:

00010110(+22)

The sign bit has not changed, so the value is valid.

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 42 / 55



Multiplication and Division

Shift: Example 2

Multiply the value 11 (expressed using 8-bit signed two’s complement
representation) by 4.

We start with the binary value for 11:

00001011(+11)

We shift left two places, resulting in:

00101100(+44)

The sign bit has not changed, so the value is valid.

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 43 / 55



Multiplication and Division

Shift: Example 3

Divide the value 12 (expressed using 8-bit signed two’s complement
representation) by 2. We start with the binary value for 12:

00001100(+12)

We shift left one place, resulting in:

00000110(+6)

Remember, we carry the sign bit to the left as we shift.

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 44 / 55



Multiplication and Division

Shift: Example 4

Divide the value 12 (expressed using 8-bit signed two’s complement
representation) by 4. We start with the binary value for 12:

00001100(+12)

We shift left two places, resulting in:

00000011(+3)

Remember, we carry the sign bit to the left as we shift.

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 45 / 55



Overflow Detection

Table of Contents

1 Lesson Objectives

2 Signed Integer

3 Signed Magnitude

4 Complement Signed Integers
One’s Complement
Two’s Complement
Excess-M Representation
Comparison

5 Multiplication and Division

6 Overflow Detection

7 Summary and Q&A

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 46 / 55



Overflow Detection

Overflow Problem

When we use any finite number of bits to represent a number, we always
run the risk of the result of our calculations becoming too large or too
small to be stored in the computer.

While we can’t always prevent overflow, we can always detect overflow.

In complement arithmetic, an overflow condition is easy to detect.

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 47 / 55



Overflow Detection

Two’s Complement: Overflow Example

Using two’s complement binary arithmetic, find the sum of 10710 and 4610.

0110 1011
+ 0010 1110
-----------
1001 1001

100110012 in Two’s complement is −11001112 = −10310

We observe there is a carry bit that goes into the sign bit. Does overflow
into the sign bit always mean that we have an overflow error?

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 48 / 55



Overflow Detection

Two’s Complement: Not an Overflow!

Using two’s complement binary arithmetic, find the sum of 2310 and −910.

0001 0111
+ 1111 0111
-----------
1 0000 1110
^
+---------- discard the carry-out bit

000011102 in Two’s complement is 1410

The result is correct i.e., no overflow error, but we do observe there is a
carry bit that goes into the sign bit!

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 49 / 55



Overflow Detection

Detecting Overflow

To detect overflow using Two’s Complement: Compare the carry-in and
the carry-out
▶ carry-in: The carry that goes into the sign bit
▶ carry-out: The carry that goes out of the binary

When carry-in ≡ carry-out → no overflow

When carry-in ̸= carry-out → overflow

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 50 / 55



Overflow Detection

Unsigned Integer Wrap-Around

Signed and unsigned numbers are both useful.
▶ For example, memory addresses are always unsigned.

Using the same number of bits, unsigned integers can express twice as
many “positive” values as signed numbers.

Wrap-around problem
▶ Signed integer: overflow
▶ Unsigned integer: wraps around, e.g., in 4 bits, 1111 + 1 = 0000

Always stay alert for overflow and wrap-around problem

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 51 / 55



Overflow Detection

Overflow and Carry

Overflow and carry can be tricky.

Signed number overflow means nothing in the context of unsigned
numbers, which set a carry flag instead of an overflow flag.

If a carry out of the leftmost bit occurs with an unsigned number, overflow
has occurred.

Carry and overflow occur independently of each other.

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 52 / 55



Overflow Detection

Overflow or Carry?

The table shows the subtle ideas of overflow and carry

Expression Result Carry? Overflow? Correct Result?
0100 + 0010 0110 No No Yes
0100 + 0110 1010 No Yes No
1100 + 1110 1010 Yes No Yes
1100 + 1010 0110 Yes Yes No

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 53 / 55



Summary and Q&A

Table of Contents

1 Lesson Objectives

2 Signed Integer

3 Signed Magnitude

4 Complement Signed Integers
One’s Complement
Two’s Complement
Excess-M Representation
Comparison

5 Multiplication and Division

6 Overflow Detection

7 Summary and Q&A

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 54 / 55



Summary and Q&A

Summary and Q&A

You are expected to be able to
1. convert and perform arithmetic in signed integer representations;
2. explain how errors can occur in computations because of overflow and

truncation;
Any questions on:
▶ Signed Integer

▶ Signed Magnitude
▶ One’s Complement
▶ Two’s Complement
▶ Excess-M Representation

▶ Multiplication and Division
▶ Overflow, wrap-around, and truncation

H. Chen (CUNY-BC) Computer Architecture September 6, 2023 55 / 55


	Lesson Objectives
	Signed Integer
	Signed Magnitude
	Complement Signed Integers
	One's Complement
	Two's Complement
	Excess-M Representation
	Comparison

	Multiplication and Division
	Overflow Detection
	Summary and Q&A

