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Lesson Objectives

Lesson Objectives

Students are expected to be able to
1. Master the concepts of hierarchical memory organization.
2. Understand how each level of memory contributes to system

performance, and how the performance is measured.
3. Master the concepts behind cache memory, virtual memory, memory

segmentation, paging, and address translation.
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Type of Memories

Types of Memories

There are two kinds of main memory:
▶ Random Access Memory (RAM)
▶ Read-Only-Memory (ROM).
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Type of Memories

RAM

There are two types of RAM:
▶ Dynamic RAM (DRAM)
▶ Static RAM (SRAM).
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Type of Memories

DRAM

Consists of capacitors that slowly leak their charge over time.
▶ Thus, they must be refreshed every few milliseconds to prevent data

loss.
▶ However, DRAM is inexpensive owing to its simple design.
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Type of Memories

SRAM

Consists of circuits similar to the D flip-flop that we studied before.
▶ SRAM is very fast memory, and it doesn’t need to be refreshed like

DRAM does.
▶ It is used to build cache memory (discuss later).
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Type of Memories

ROM

To store permanent, or semi-permanent data that persists even while the
system is turned off.
▶ ROM also does not need to be refreshed, either, and
▶ It needs very little charge to retain its memory.
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Memory Hierarchy

Implication: Memory Hierarchy

Generally speaking, faster memory is more expensive than slower memory,
which is a “constant”.
▶ To provide the best performance at the lowest cost, memory is

organized in a hierarchical fashion.
▶ Small, fast storage elements are kept in the CPU, larger, slower main

memory is accessed through the data bus.
▶ Larger, (almost) permanent storage in the form of disk and tape

drives is still further from the CPU.
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Memory Hierarchy

Illustrating Memory Hierarchy
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Memory Hierarchy

From Register to Virtual Memory

We are most interested in the memory hierarchy that involves registers,
cache, main memory, and virtual memory.
▶ Registers are storage locations available on the processor itself.
▶ Virtual memory is typically implemented using a backing store (e.g.,

hard disk drive); it extends the address space from RAM to the hard
drive.

▶ Virtual memory provides more space: Cache memory provides speed.
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Memory Hierarchy

Operations

1. To access a particular piece of data, the CPU first sends a request to
its nearest memory, usually cache.

2. If the data is not in cache, then main memory is queried. If the data
is not in main memory, then the request goes to disk.

3. Once the data is located, then the data and a number of its nearby
data elements are fetched into cache memory.
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Memory Hierarchy

Operation Scenarios

This leads us to some scenarios.
▶ A hit is when data is found at a given memory level.
▶ A miss is when it is not found.
▶ The hit rate, or the hit ratio is the percentage of time data is found

at a given memory level.
▶ The miss rate, or the miss ratio is the percentage of time it is not.

miss rate = 1 - hit rate.
▶ The hit time is the time required to access data at a given memory

level.
▶ The miss penalty is the time required to process a miss, including the

time that it takes to replace a block of memory plus the time it takes
to deliver the data to the processor.

Examples and analysis . . .
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Memory Hierarchy

Cache Hit and Miss: Simplified Scenario

Consider the simplified scenario where a system has a cache for the main
memory:
▶ hit time for the main memory is 10 ns;
▶ hit time for the cache is 1 ns; and
▶ ignore anything else

Scenario 1: what’s the average latency when the hit ratio is 10%?

t̄1 = 10% × 1 + (1 − 10%) × (1 + 10) = 0.1 + 0.9 ∗ 11 = 0.1 + 9.9 = 10.0

Scenario 2. What’s the average latency when the hit ratio is 90%

t̄2 = 90% × 1 + (1 − 90%) × (1 + 10) = 0.9 + 0.1 ∗ 11 = 0.9 + 1.1 = 2.0

We shall discuss these again.
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Memory Hierarchy

Principle of Locality

Meaning: Once a byte is accessed, it’s likely that a nearby data element
will be needed soon. There are three forms of locality:
▶ Temporal locality: Recently-accessed data elements tend to be

accessed again.
▶ Spatial locality: Accesses tend to cluster.
▶ Sequential locality: Instructions tend to be accessed sequentially (a

special case of spatial locality).
To take advantage of spatial locality, cache memory is organized in blocks.
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Memory Hierarchy

Principle of Locality: Example

Assuming all variables are allocated in the main memory, can you identify
access locality in the code snippet below:

double sum = 0 ;
f o r ( i n t i =0; i <SIZE ; i ++) {

sum = sum + data [ i ] ;
}

H. Chen (CUNY-BC) Computer Architecture December 5, 2023 20 / 104



Cache Memory

Table of Contents

1 Lesson Objectives

2 Type of Memories

3 Memory Hierarchy

4 Cache Memory
Direct Mapped Cache
Fully Associative Cache
Cache Replacement Policy
Effective Access Time

5 Virtual Memory

H. Chen (CUNY-BC) Computer Architecture December 5, 2023 21 / 104



Cache Memory

Cache Memory

▶ It is to speed up accesses by storing recently used data closer to the
CPU, instead of storing it in main memory.

▶ Although cache is much smaller than main memory, its access time is
a fraction of that of main memory.

▶ Unlike main memory, which is accessed by address, cache is typically
accessed by content; hence, it is often called content addressable
memory.
▶ Because of this, a single large cache memory isn’t always desirable—it

takes longer to search.
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Cache Memory Direct Mapped Cache

Direct Mapped Cache

The simplest cache mapping scheme is direct mapped cache.
▶ In a direct mapped cache consisting of N blocks of cache, block X of

main memory maps to cache block Y = X mod N .
▶ Thus, if we have 10 blocks of cache, block 7 of cache may hold

blocks 7, 17, 27, 37, . . . of main memory.
Q: why cache are organized in blocks?
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Cache Memory Direct Mapped Cache

Example: Direct Mapping of Main Memory Blocks to
Cache Blocks
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Cache Memory Direct Mapped Cache

Main Memory Address Organization

To perform direct mapping, the binary main memory address is partitioned
into the fields shown below.

Tag Block Offset
bits in main memory address

▶ The offset field uniquely identifies an address within a specific block.
▶ The block field selects a unique block of cache.
▶ The tag field is whatever is left over.

The sizes of these fields are determined by characteristics of both memory
and cache. (See examples)
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Cache Memory Direct Mapped Cache

Main Memory Address Organization: Example 1

Consider a byte-addressable main memory consisting of 4 blocks, and a
cache with 2 blocks, where each block is 4 bytes. Using Tag, Block, and
Offset, illustrate how main memory maps to cache. Particularly, which
cache block is mapped to main memory address A?
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Cache Memory Direct Mapped Cache

Main Memory Address Organization: Example 1

Consider a byte-addressable main memory consisting of 4 blocks, and a
cache with 2 blocks, where each block is 4 bytes.
▶ Using the tag, block, and offset fields, we can represent the mapping:

▶ We need 4 bits for main memory address (4 × 4 = 16 = 24)
▶ Each block is 4 bytes, so the offset field must contain 2 bits (22 = 4);
▶ There are 2 blocks in cache, so the block field must contain 1 bit

(21 = 2);
▶ This leaves 1 bit for the tag.

Tag Block Offset
1 bit 1 bit 2 bits
4 bits in main memory address
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Cache Memory Direct Mapped Cache

Main Memory Address Organization: Example 1

Suppose we need to access main memory address 316 (00112 in binary).
We can compute the mapping from the address:

Memory Block = 3/4 = 0
Cache Block = Memory Block mod 2 = 0 mod 2 = 0

Tag = Memory Block/2 = 0/2 = 0

However, we can conveniently look them up from the address:

Tag Block Offset
0 0 11

4 bits in main memory address

Thus, the main memory address 00112 maps to cache block 0 with tag 0.
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Cache Memory Direct Mapped Cache

Main Memory Address Organization: Example 1

Suppose we need to access main memory address A16 = 1010 (10102 in
binary). We can compute the mapping from the address:

Memory Block = 10/4 = 2
Cache Block = Memory Block mod 2 = 2 mod 2 = 0

Tag = Memory Block/2 = 2/2 = 1

However, we can conveniently look them up from the address:

Tag Block Offset
1 0 11

4 bits in main memory address

Thus, the main memory address 00112 maps to cache block 0 with tag 1.
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Cache Memory Direct Mapped Cache

Main Memory Address Organization: Example 1
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Cache Memory Direct Mapped Cache

Main Memory Address Organization: Example 2

Assume a byte-addressable memory consists of 214 bytes, cache has
16 = 24 blocks, and each block has 8 = 23 bytes. How does the main
memory map to the cache?
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Cache Memory Direct Mapped Cache

Main Memory Address Organization: Example 2

Assume a byte-addressable memory consists of 214 bytes, cache has
16 = 24 blocks, and each block has 8 = 23 bytes.
▶ The number of memory blocks is 214/23 = 211

▶ Using the tag, block, and offset fields, we can represent the mapping:
▶ We need 14 bits for main memory address (214 bytes memory))
▶ Each block is 8 bytes, so the offset field must contain 3 bits (23 = 8);
▶ There are 16 blocks in cache, so the block field must contain 4 bit

(24 = 16);
▶ This leaves 14 - 3 - 4 = 7 bits for the tag.

Tag Block Offset
7 bits 4 bits 3 bits

14 bits in main memory address
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Cache Memory Direct Mapped Cache

Main Memory Address Organization: Example 3

Assume a byte-addressable memory consisting of 16 bytes divided into 8
blocks. Cache contains 4 blocks. What is the main memory organization
for direct mapped cache?
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Cache Memory Direct Mapped Cache

Main Memory Address Organization: Example 3

Assume a byte-addressable memory consisting of 16 bytes divided into 8
blocks. Cache contains 4 blocks. What is the main memory organization
for direct mapped cache?
▶ Memory address: 4 bits (24 = 16)
▶ Block size: 16/8 = 2
▶ Offset field: 1 bit (21 = 2)
▶ block field: 2 bits (22 = 4)
▶ tag field: 4 - 1 - 2 = 1 bit

Tag Block Offset
1 bit 2 bits 1 bit
4 bits in main memory address
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Cache Memory Direct Mapped Cache

Main Memory Address Organization: Example 4

Consider 16-bit memory addresses and 64 blocks of cache where each
block contains 8 bytes. What is the main memory organization for direct
mapped cache?
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Cache Memory Direct Mapped Cache

Main Memory Address Organization: Example 4

Consider 16-bit memory addresses and 64 blocks of cache where each
block contains 8 bytes. What is the main memory organization for direct
mapped cache?
▶ 3 bits for the offset
▶ 6 bits for the block
▶ 7 bits for the tag

What are the values of the offset, block, and tag for memory reference at
address 0x0404?

Tag Block Offset
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

7 bits 6 bits 3 bits
4 bits in main memory address
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Cache Memory Direct Mapped Cache

Direct Mapped Cache: Summary

Direct mapped cache maps main memory blocks in a modular fashion to
cache blocks. The mapping depends on:
▶ The number of bits in the main memory address (how many addresses

exist in main memory).
▶ The number of blocks is in cache (which determines the size of the

block field).
▶ How many addresses (either bytes or words) are in a block (which

determines the size of the offset field)?
However, direct mapped cache has a shortcoming: memory block and
cache block mapping is fixed.
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Cache Memory Fully Associative Cache

Full Associative Cache

A memory block can go anywhere in cache.
▶ Cache would have to fill up before any blocks are evicted.
▶ Memory address organization:

▶ Memory address is partitioned into only two fields: the tag and the
offset.

▶ Example: 14-bit memory addresses and a cache with 16 blocks, each
block of size 8 = 23. The format of a memory reference is:

Tag Offset
11 bits 3 bits

14 bits in main memory address
When the cache is searched, all tags are searched in parallel to retrieve the
data quickly.
▶ This requires special, costly hardware.
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Cache Memory Fully Associative Cache

Cache Replacement

What if a cache block is already occupied?
▶ Direct mapped cache evicts a block whenever another memory

reference needs that block.
▶ With fully associative cache, we have no such mapping, thus we must

devise an algorithm to determine which block to evict from the cache.

▶ The block that is evicted is the victim block.
▶ There are a number of ways to pick a victim (replacement policy that

we will discuss them shortly).
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Cache Memory Fully Associative Cache

Set Associative Cache

Combines the ideas of direct mapped cache and fully associative cache.
Instead of mapping anywhere in the entire cache, a memory reference can
map only to the subset of cache slots.
▶ N-way set associative cache mapping

▶ Like direct mapped cache in that a memory reference maps to a
particular location in cache.

▶ Unlike direct mapped cache, a memory reference maps to a set of N
several cache blocks, similar to the way in which fully associative cache
works.
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Cache Memory Fully Associative Cache

Set Associative Cache: Example

The number of cache blocks per set in
set associative cache varies according
to overall system design.
▶ For example, a 2-way set

associative cache can be
conceptualized as shown in the
schematic below.

▶ Each set contains two different
memory blocks.
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Cache Memory Fully Associative Cache

Memory Address Organization

▶ In set associative cache mapping, a memory reference is divided into
three fields: tag, set, and offset.

▶ As with direct-mapped cache, the offset field chooses the byte within
the cache block, and the tag field uniquely identifies the memory
address.

▶ The set field determines the set to which the memory block maps.
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Cache Memory Fully Associative Cache

Set Associative Mapping: Example 1

Suppose we are using 2-way set associative mapping with a
byte-addressable main memory of 214 bytes and a cache with 16 blocks,
where each block contains 8 bytes. How does the main memory maps to
the cache?
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Cache Memory Fully Associative Cache

Set Associative Mapping: Example 1

Suppose we are using 2-way set associative mapping with a
byte-addressable main memory of 214 bytes and a cache with 16 blocks,
where each block contains 8 bytes.
▶ Cache has a total of 16 blocks, and each set has 2 blocks, then there

are 16/2 = 8 sets in cache.
▶ Set field: 3 bits (23 = 8 sets)
▶ Offset field: 3 bits (23 = 8 bytes)
▶ Tag field: 14 - 3 - 3 = 8 bits

Tag Set Offset
8 bits 3 bits 3 bits
14 bits in main memory address
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Cache Memory Fully Associative Cache

Comparison of Cache Mapping: Example 1

Suppose a byte-addressable memory contains 1 MB and cache consists of
32 blocks, where each block contains 16 bytes. Using direct mapping, fully
associative mapping, and a 4-way set associative mapping, determine
where the main memory address 0x326A0 maps to in cache.
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Cache Memory Fully Associative Cache

Comparison of Cache Mapping: Example 1

Suppose a byte-addressable memory contains 1 MB and cache consists of
32 blocks, where each block contains 16 bytes. Using direct mapping, fully
associative mapping, and a 4-way set associative mapping, determine
where the main memory address 0x326A0 maps to in cache.
▶ Memory address: 20 bits (1 MB = 220 bytes)

Direct Mapping Tag Block Offset 16 = 24, 32 = 25,
20 − 4 − 5 = 1111 bits 5 bits 4 bits

Fully Associative Tag Offset 16 = 24,
20 − 4 = 1616 bits 4 bits

4-way Set Associative Tag Set Offset 16 = 24,
32/4 = 8 = 23,
20 − 3 − 4 = 13

13 bits 3 bits 4 bits

20 bits in main memory address
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Cache Memory Fully Associative Cache

Comparison of Cache Mapping: Example 1

Suppose a byte-addressable memory contains 1 MB and cache consists of
32 blocks, where each block contains 16 bytes. Using direct mapping, fully
associative mapping, and a 4-way set associative mapping, determine
where the main memory address 0x326A0 maps to in cache.

0x326A0 = 001100100110101000002

Direct Mapping Tag Block Offset
0011 0010 011 0 1010 0000

Fully Associative Tag Offset
0011 0010 0110 1010 0000

4-way Set Associative Tag Set Offset
0011 0010 0110 1 0 10 0000

20 bits in main memory address
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Cache Memory Fully Associative Cache

Comparison of Cache Mapping: Example 2

A byte-addressable computer with an 8-block cache of 4 bytes each, trace
memory accesses: 0x01, 0x04, 0x09, 0x05, 0x14, 0x21, and 0x01 for each
mapping approach: direct mapping, fully associative, and 2-way set
associative.
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Cache Memory Fully Associative Cache

Comparison of Cache Mapping: Example 2: Answer Part 1

A byte-addressable computer with an 8-block cache of 4 bytes each, trace
memory accesses: 0x01, 0x04, 0x09, 0x05, 0x14, 0x21, and 0x01 for each
mapping approach: direct mapping, fully associative, and 2-way set
associative. The total memory is 28 = 256 bytes.

Direct Mapping Tag Block Offset 4 = 22, 8 = 23,
8 − 3 − 2 = 33 bits 3 bits 2 bits

Fully Associative Tag Offset 4 = 22, 8 − 2 = 66 bits 2 bits
4-way Set Associative Tag Set Offset 4 = 22,

8/2 = 4 = 22,
8 − 2 − 2 = 4

4 bits 2 bits 2 bits

8 bits in main memory address
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Cache Memory Fully Associative Cache

Comparison of Cache Mapping: Example 2: Answer Part
2(a)

For direct mapping scheme:
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Cache Memory Fully Associative Cache

Comparison of Cache Mapping: Example 2: Answer Part
2(b)

For fully associate scheme:
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Cache Memory Fully Associative Cache

Comparison of Cache Mapping: Example 2: Answer Part
2(c)

For 2-way set associate scheme:
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Cache Memory Cache Replacement Policy

Cache Replacement Policy

With fully associative and set associative cache, a replacement policy is
invoked when it becomes necessary to evict a block from cache.
▶ An optimal replacement policy would be able to look into the future

to see which blocks won’t be needed for the longest period of time.
▶ An optimal replacement is instructive to serve as a benchmark for

assessing the efficiency of any other scheme we come up with.
▶ The replacement policy that we choose depends upon the locality

that we are trying to optimize
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Cache Memory Cache Replacement Policy

LRU

Interested in temporal locality:
▶ The least recently used (LRU) algorithm keeps track of the last time

that a block was assessed and evicts the block that has been unused
for the longest period of time.

▶ The disadvantage of this approach is its complexity
▶ LRU has to maintain an access history for each block, which ultimately

slows down the cache.
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Cache Memory Cache Replacement Policy

FIFO

First-in, first-out (FIFO) is a popular cache replacement policy.
▶ In FIFO, the block that has been in the cache the longest, regardless

of when it was last used.
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Cache Memory Cache Replacement Policy

FIFO

▶ A random replacement policy does what its name implies: It picks a
block at random and replaces it with a new block.

▶ Random replacement can certainly evict a block that will often be
needed or needed soon, but it never thrashes.
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Cache Memory Effective Access Time

Performance of Hierarchical Memory

Effective access time (EAT) is a weighted average that takes into account
the hit ratio and relative access times of successive levels of memory.
▶ Under the condition that access to cache and main memory occurs

concurrently (the accesses overlap), the EAT for a two-level memory
is given by:

EAT = H × AccessC + (1 − H) × AccessMM

where H is the cache hit rate and AccessC and AccessMM are the
access times for cache and main memory, respectively.
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Cache Memory Effective Access Time

Effective Access Time: Example 1

Consider a system with a main memory access time of 200 ns supported by
a cache having a 10 ns access time and a hit rate of 99%. What is EAT?
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Cache Memory Effective Access Time

Effective Access Time: Example 1

Consider a system with a main memory access time of 200 ns supported
by a cache having a 10 ns access time and a hit rate of 99%.
▶ Suppose access to cache and main memory occurs concurrently (the

accesses overlap). The EAT is:

0.99 × 10 + 0.01 × 200 = 9.9 + 2 = 11ns
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Cache Memory Effective Access Time

Effective Access Time: Example 2

Consider a system with a main memory access time of 200 ns supported by
a cache having a 10 ns access time and a hit rate of 99%. What is EAT?
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Cache Memory Effective Access Time

Effective Access Time: Example 2

Consider a system with a main memory access time of 200 ns supported
by a cache having a 10 ns access time and a hit rate of 99%.
▶ If the accesses do not overlap, the EAT is:

0.99 × 10 + 0.01 × (10 + 200) = 9.9 + 2.1 = 12ns

This analysis for determining the effective access time can be extended to
any number of memory levels.
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Cache Memory Effective Access Time

Discussion: Locality

Caching is depends upon programs exhibiting good locality.
▶ Some object-oriented programs have poor locality owing to their

complex, dynamic structures.
▶ Arrays stored in column-major rather than row-major order can be

problematic for certain cache organizations.
With poor locality, caching can actually cause performance degradation
rather than performance improvement.
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Cache Memory Effective Access Time

Discussion: Cache Replacement Policies

Cache replacement policies must take into account dirty blocks, those
blocks that have been updated while they were in the cache.
▶ Dirty blocks must be written back to memory. A write policy

determines how this will be done.
▶ There are two types of write policies, write through and write back.

▶ Write through updates cache and main memory simultaneously on
every write.

▶ Write back (also called copyback) updates memory only when the
block is selected for replacement.
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Cache Memory Effective Access Time

Write Through vs. Write Back

The disadvantage of write through:
▶ Memory must be updated with each cache write, which slows down

the access time on updates.
▶ This slowdown is usually negligible, because the majority of accesses

tend to be reads, not writes.
The advantage of write back:
▶ Memory traffic is minimized

Its disadvantage:
▶ Memory does not always agree with the value in cache, causing

problems in systems with many concurrent users.
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Cache Memory Effective Access Time

Integrated Cache or Separated Cache

▶ The cache we have been discussing is called a unified or integrated
cache where both instructions and data are cached.

▶ Many modern systems employ separate caches for data and
instructions. This is called a Harvard cache.
▶ The separation of data from instructions provides better locality, at the

cost of greater complexity.
▶ Simply making the cache larger provides about the same performance

improvement without the complexity.
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Cache Memory Effective Access Time

Victim Cache

▶ Cache performance can also be improved by adding a small
associative cache to hold blocks that have been evicted recently.

▶ This is called a victim cache.

H. Chen (CUNY-BC) Computer Architecture December 5, 2023 66 / 104



Cache Memory Effective Access Time

Trace Cache

▶ A trace cache is a variant of an instruction cache that holds decoded
instructions for program branches, giving the illusion that
noncontiguous instructions are really contiguous.
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Cache Memory Effective Access Time

Multi-Level Cache

▶ Most of today’s small systems employ multilevel cache hierarchies.
▶ The levels of cache form their own small memory hierarchy.
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Cache Memory Effective Access Time

Example: Two-Level Cache

▶ Level 1 cache (8KB to 64KB) is situated on the processor itself.
▶ Access time is typically about 4ns.

▶ Level 2 cache (64KB to 2MB) may be on the motherboard, or on an
expansion card.
▶ Access time is usually around 15 - 20ns.
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Cache Memory Effective Access Time

Three-Level Cache

▶ In systems that employ three levels of cache, the Level 2 cache is
placed on the same die as the CPU (reducing access time to about
10ns).

▶ Accordingly, the Level 3 cache (2MB to 256MB) refers to cache that
is situated between the processor and main memory.

▶ Once the number of cache levels is determined, the next thing to
consider is whether data (or instructions) can exist in more than one
cache level.
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Cache Memory Effective Access Time

Inclusive vs. Exclusive Cache

If the cache system used an inclusive cache, the same data may be present
at multiple levels of cache.
▶ Strictly inclusive caches guarantee that all data in a smaller cache

also exists at the next higher level.
Exclusive caches permit only one copy of the data.
▶ The trade-offs in choosing one over the other involve weighing the

variables of access time, memory size, and circuit complexity
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Virtual Memory

Virtual Memory

▶ Cache memory enhances performance by providing faster memory
access speed.

▶ Virtual memory enhances performance by providing greater memory
capacity, without the expense of adding main memory.

▶ Instead, a portion of a disk drive serves as an extension of main
memory.

▶ If a system uses paging, virtual memory partitions main memory into
individually managed page frames, that are written (or paged) to disk
when they are not immediately needed.
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Virtual Memory

Basic Concepts

▶ A physical address is the actual memory address of physical memory.
▶ Programs create virtual addresses that are mapped to physical

addresses by the memory manager.
▶ Page faults occur when a logical address requires that a page be

brought in from disk.
▶ Memory fragmentation occurs when the paging process results in the

creation of small, unusable clusters of memory addresses.
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Virtual Memory

Paging

Main memory and virtual memory are divided into equal sized pages.
▶ The entire address space required by a process need not be in memory

at once. Some parts can be on disk, while others are in main memory.
▶ Further, the pages allocated to a process do not need to be stored

contiguously—either on disk or in memory.
▶ In this way, only the needed pages are in memory at any time, the

unnecessary pages are in slower disk storage.
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Virtual Memory

Page Table

▶ Information concerning the location of each page, whether on disk or
in memory, is maintained in a data structure called a page table
(shown below).

▶ There is a page table for each active process.

H. Chen (CUNY-BC) Computer Architecture December 5, 2023 76 / 104



Virtual Memory

Page Table: Example
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Virtual Memory

Virtual Address to Physical Memory Address

▶ When a process generates a virtual address, the operating system
translates it into a physical memory address.

▶ To accomplish this, the virtual address is divided into two fields: A
page field, and an offset field.

▶ The page field determines the page location of the address, and the
offset indicates the location of the address within the page.

▶ The logical page number is translated into a physical page frame
through a lookup in the page table.
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Virtual Memory

Page Fault

▶ If the valid bit is zero in the page table entry for the logical address,
this means that the page is not in memory and must be fetched from
disk.

▶ This is a page fault.
▶ If necessary, a page is evicted from memory and is replaced by the

page retrieved from disk, and the valid bit is set to 1.
▶ If the valid bit is 1, the virtual page number is replaced by the

physical frame number.
▶ The data is then accessed by adding the offset to the physical frame

number.
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Virtual Memory

Example

Suppose a system has a virtual address space of 8K and a physical address
space of 4K, and the system uses byte addressing.
▶ We have 213/210 = 23 virtual pages.
▶ A virtual address has 13 bits (8K = 213) with 3 bits for the page field

and 10 for the offset, because the page size is 1024.
▶ A physical memory address requires 12 bits, the first 2 bits for the

page frame and the trailing 10 bits the offset.
Virtual Address

13 bits
Page Offset
3 bits 10 bits

Physical Address
12 bits

Frame Offset
2 bits 10 bits
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Virtual Memory

Virtual Memory: Example

Suppose we have the page table shown below. What happens when the
CPU generates address 545910 = 10101010100112 = 0x1553?
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Virtual Memory

Virtual Memory: Example

What happens when the CPU generates address
545910 = 10101010100112 = 0x1553?

Virtual Address
13 bits

Page Offset
3 bits 10 bits

The high-order 3 bits of the virtual address, 1012 = 510, provide the page
number in the page table.
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Virtual Memory

Virtual Memory: Example

The address 10101010100112 is converted to physical address
0101010100112 = 0x1363 because the page field 101 is replaced by frame
number 01 through a lookup in the page table.
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Virtual Memory

Virtual Memory: Example

What happens when the CPU generates address 10000000001002?
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Virtual Memory

Effective Access Time

Effective access time (EAT) takes all levels of memory into consideration.
▶ Thus, virtual memory is also a factor in the calculation, and we also

have to consider page table access time.
Suppose a main memory access takes 200ns, the page fault rate is 1%,
and it takes 10ms to load a page from disk. We have:

EAT = 0.99(200ns + 200ns) + 0.01(10ms) = 100, 396ns
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Virtual Memory

TLB

Even if we had no page faults, the EAT would be 400ns because memory
is always read twice:
▶ First to access the page table, and second to load the page from

memory.
Because page tables are read constantly, it makes sense to keep them in a
special cache called a translation look-aside buffer (TLB).
▶ TLBs are a special associative cache that stores the mapping of

virtual pages to physical pages.
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Virtual Memory

TLB Lookup Process

▶ Extract the page number from the virtual address.
▶ Extract the offset from the virtual address.
▶ Search for the virtual page number in the TLB.
▶ If the (virtual page #, page frame #) pair is found in the TLB, add

the offset to the physical frame number and access the memory
location.

▶ If there is a TLB miss, go to the page table to get the necessary
frame number. If the page is in memory, use the corresponding frame
number and add the offset to yield the physical address.

▶ If the page is not in main memory, generate a page fault and restart
the access when the page fault is complete.
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Virtual Memory

TLB Lookup Process
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TLB, Page Table, and Main Memory
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Virtual Memory

Segmentation

Another approach to virtual memory is the use of segmentation.
▶ Instead of dividing memory into equal-sized pages, virtual address

space is divided into variable-length segments, often under the control
of the programmer.

▶ A segment is located through its entry in a segment table, which
contains the segment’s memory location and a bounds limit that
indicates its size.

▶ After a page fault, the operating system searches for a location in
memory large enough to hold the segment that is retrieved from disk.
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Virtual Memory

Fragmentation

Both paging and segmentation can cause fragmentation.
▶ Paging is subject to internal fragmentation because a process may not

need the entire range of addresses contained within the page. Thus,
there may be many pages containing unused fragments of memory.

▶ Segmentation is subject to external fragmentation, which occurs
when contiguous chunks of memory become broken up as segments
are allocated and deallocated over time.
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Virtual Memory

Internal Fragmentation: Example

▶ Consider a small computer
having 32K of memory.

▶ The 32K memory is divided into
8 page frames of 4K each.

▶ A schematic of this
configuration is shown at the
right.

▶ The numbers at the right are
memory frame addresses.

0
4K
8K
12K
16K
20K
24K
28K
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Virtual Memory

Internal Fragmentation: Example

▶ Suppose there are four processes
waiting to be loaded into the
system with memory
requirements as shown in the
table.

▶ We observe that these processes
require 31K of memory.

Process Name Memory Needed
P1 8K
P2 10K
P3 9K
P4 4K
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Virtual Memory

Internal Fragmentation: Example

▶ When the first three processes are loaded, memory looks like this:
▶ All the frames are occupied by three of the processes.

Process Name Memory Needed
P1 8K
P2 10K
P3 9K
P4 4K

P1 0
P1 4K
P2 8K
P2 12K
P2 16K

P3 20K
P3 24K
P3 28K
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Virtual Memory

Internal Fragmentation: Example

▶ Despite the fact that there are enough free bytes in memory to load
the fourth process, P4 has to wait for one of the other three to
terminate, because there are no unallocated frames.

▶ This is an example of internal fragmentation.
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Virtual Memory

External Fragmentation: Example

▶ Suppose that instead of frames,
our 32K system uses
segmentation.

▶ The memory segments of two
processes is shown in the table
at the right.

▶ The segments can be allocated
anywhere in memory.

Process Segment Memory
Name Needed

P1 S1 8K
S2 10K
S3 9K

P2 S1 4K
S2 11K
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Virtual Memory

External Fragmentation: Example

▶ All the segments of P1 and one of the segments of P2 are loaded as
shown at the right.

▶ Segment S2 of process P2 requires 11K of memory, and there is only
1K free, so it waits.
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Virtual Memory

External Fragmentation: Example

▶ Eventually, Segment 2 of Process 1 is no longer needed, so it is
unloaded giving 11K of free memory.

▶ But Segment 2 of Process 2 cannot be loaded because the free
memory is not contiguous.
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Virtual Memory

External Fragmentation: Example

▶ Over time, the problem gets worse, resulting in small unusable blocks
scattered throughout physical memory.

▶ This is an example of external fragmentation.
▶ Eventually, this memory is recovered through compaction, and the

process starts over.
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Virtual Memory

Paging vs. Fragmentation

▶ Large page tables are cumbersome and slow, but with its uniform
memory mapping, page operations are fast. Segmentation allows fast
access to the segment table, but segment loading is labor-intensive.

▶ Paging and segmentation can be combined to take advantage of the
best features of both by assigning fixed-size pages within
variable-sized segments.

▶ Each segment has a page table. This means that a memory address
will have three fields, one for the segment, another for the page, and
a third for the offset.
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Virtual Memory

Virtual Memory: Real-World Example

▶ The Pentium architecture supports both paging and segmentation,
and they can be used in various combinations including unpaged
unsegmented, segmented unpaged, and unsegmented paged.

▶ The processor supports two levels of cache (L1 and L2), both having
a block size of 32 bytes.

▶ The L1 cache is next to the processor, and the L2 cache sits between
the processor and memory.

▶ The L1 cache is in two parts: and instruction cache (I-cache) and a
data cache (D-cache).
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Virtual Memory

Virtual Memory: Real-World Example
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Virtual Memory

Summary and Q&A

▶ Computer memory is organized in a hierarchy, with the smallest,
fastest memory at the top and the largest, slowest memory at the
bottom.

▶ Cache memory gives faster access to main memory, while virtual
memory uses disk storage to give the illusion of having a large main
memory.

▶ Cache maps blocks of main memory to blocks of cache memory.
Virtual memory maps page frames to virtual pages.

▶ There are three general types of cache: direct mapped, fully
associative, and set associative.
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Virtual Memory

Summary and Q&A

▶ With fully associative and set associative cache, as well as with virtual
memory, replacement policies must be established.

▶ Replacement policies include LRU, FIFO, or LFU. These policies must
also take into account what to do with dirty blocks.

▶ All virtual memory must deal with fragmentation, internal for paged
memory, external for segmented memory.
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