
Instruction Set Architectures

Hui Chen a

aCUNY Brooklyn College, Brooklyn, NY, USA

November 21, 2023

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 1 / 72

Outline

1 Lesson Objectives

2 Instruction Formats
Byte Ordering
CPU Data

3 Instruction Format

4 Instruction Types

5 Addressing

6 Instruction Pipelining

7 Real-World Examples

8 Summary and Q&A

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 2 / 72

Acknowledgement

The content of most slides come from the authors of the textbook:

Null, Linda, & Lobur, Julia (2018). The essentials of computer
organization and architecture (5th ed.). Jones & Bartlett Learning.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 3 / 72

Lesson Objectives

Table of Contents

1 Lesson Objectives

2 Instruction Formats
Byte Ordering
CPU Data

3 Instruction Format

4 Instruction Types

5 Addressing

6 Instruction Pipelining

7 Real-World Examples

8 Summary and Q&A

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 4 / 72

Lesson Objectives

Lesson Objectives

Students are expected to be able to
1. Understand the factors involved in instruction set architecture design.
2. Gain familiarity with memory addressing modes.
3. Understand the concepts of instruction-level pipelining and its effect

upon execution performance.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 5 / 72

Instruction Formats

Table of Contents

1 Lesson Objectives

2 Instruction Formats
Byte Ordering
CPU Data

3 Instruction Format

4 Instruction Types

5 Addressing

6 Instruction Pipelining

7 Real-World Examples

8 Summary and Q&A

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 6 / 72

Instruction Formats

Instruction Formats

Instruction sets are differentiated by the following:
▶ Number of bits per instruction.
▶ Stack-based or register-based.
▶ Number of explicit operands per instruction.
▶ Operand location.
▶ Types of operations.
▶ Type and size of operands.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 7 / 72

Instruction Formats

Architecture Consideration

Instruction set architectures are measured according to:
▶ Main memory space occupied by a program.
▶ Instruction complexity.
▶ Instruction length (in bits).
▶ Total number of instructions in the instruction set.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 8 / 72

Instruction Formats

Design Consideration

In designing an instruction set, consideration is given to:
▶ Instruction length. Whether short, long, or variable.
▶ Number of operands. Number of addressable registers.
▶ Memory organization. Whether byte- or word addressable.
▶ Addressing modes. Choose any or all: direct, indirect or indexed, and
▶ . . .

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 9 / 72

Instruction Formats Byte Ordering

Byte Ordering

Endianness, or byte ordering, is another major architectural consideration.
▶ If we have a two-byte integer, the integer may be stored in memory so

that
▶ the least significant byte is followed by the most significant byte, or
▶ vice versa.

▶ In little endian machines, the least significant byte is followed by the
most significant byte. (the least significant first)

▶ Big endian machines store the most significant byte first (at the lower
address). (the most significant first)

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 10 / 72

Instruction Formats Byte Ordering

Byte Ordering: Example 1

Suppose we have the hexadecimal number 0x12345678. The big endian
and small endian arrangements of the bytes on a byte-addressable
computer are shown below.

Address (in Binary) 00 01 10 11
Little Endian (in Hex) 78 56 34 12
Big Endian (in Hex) 12 34 56 78

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 11 / 72

Instruction Formats Byte Ordering

Byte Ordering: Example 2

A larger example: A byte-addressable computer uses 32-bit integers. The
values 0xABCD1234, 0x00FE4321, and 0x10 would be stored sequentially
in memory, starting at address 0x200 as here.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 12 / 72

Instruction Formats Byte Ordering

Byte Ordering: Example 2

Address Big Endian Little Endian
0x200 0xAB 0x34
0x201 0xCD 0x12
0x202 0x12 0xCD
0x203 0x34 0xAB
0x204 0x00 0x21
0x205 0xFE 0x43
0x206 0x43 0xFE
0x207 0x21 0x00
0x208 0x00 0x10
0x209 0x00 0x00
0x20A 0x00 0x00
0x20B 0x10 0x00

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 13 / 72

Instruction Formats Byte Ordering

Big Endian vs Little Endian

Big endian:
▶ Is more natural.
▶ The sign of the number can be determined by looking at the byte at

address offset 0.
▶ Strings and integers are stored in the same order.

Little endian:
▶ Makes it easier to place values on non-word boundaries.
▶ Conversion from a 16-bit integer address to a 32-bit integer address

does not require any arithmetic.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 14 / 72

Instruction Formats CPU Data

How the CPU will Store Data?

Design consideration: how the CPU will store data? We have three
choices:
▶ A stack architecture
▶ An accumulator architecture
▶ A general purpose register architecture

In choosing one over the other, the tradeoffs are
▶ simplicity (and cost) of hardware design with
▶ execution speed and ease of use.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 15 / 72

Instruction Formats CPU Data

Stack Architecture

In a stack architecture, instructions and operands are implicitly taken from
the stack.
▶ A stack cannot be accessed randomly.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 16 / 72

Instruction Formats CPU Data

Accumulator Architecture

In an accumulator architecture, one operand of a binary operation is
implicitly in the accumulator.
▶ One operand is in memory, creating lots of bus traffic.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 17 / 72

Instruction Formats CPU Data

GPR Architecture

In a general purpose register (GPR) architecture, registers can be used
instead of memory.
▶ Faster than accumulator architecture.
▶ Efficient implementation for compilers.
▶ Results in longer instructions.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 18 / 72

Instruction Formats CPU Data

GPR Architecture: Types

Most systems today are GPR systems. There are three types:
▶ Memory-memory where two or three operands may be in memory.
▶ Register-memory where at least one operand must be in a register.
▶ Load-store where no operands may be in memory.

The number of operands and the number of available registers has a direct
effect on instruction length.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 19 / 72

Instruction Formats CPU Data

Stack Architecture: Instruction Format

Stack machines use one- and zero-operand instructions.
▶ LOAD and STORE instructions require a single memory address

operand.
▶ Other instructions use operands from the stack implicitly.
▶ PUSH and POP operations involve only the stack’s top element.
▶ Binary instructions (e.g., ADD, MULT) use the top two items on the

stack.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 20 / 72

Instruction Formats CPU Data

Stack Architecture: Arithmetic and Postfix Notation

We are accustomed to writing expressions using infix notation, such as: Z
= X + Y.
▶ Stack architectures require us to think about arithmetic expressions

differently.
▶ Stack arithmetic requires that we use postfix notation: Z = XY+.
▶ This is also called reverse Polish notation.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 21 / 72

Instruction Formats CPU Data

Postfix Notation

The principal advantage of postfix notation is that parentheses are not
used.
▶ For example, the infix expression,

Z = (X + Y) ∗ (W − U)

becomes:
Z = XY + WU − ∗

in postfix notation.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 22 / 72

Instruction Formats CPU Data

Infix to Postfix Notation: Example

Convert the infix expression (2 + 3) − 6/3 to postfix:

23 + 63/−

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 23 / 72

Instruction Formats CPU Data

Evaluating Postfix Expression: Example: 1

Use a stack to evaluate the postfix expression 23 + 63/−:
1. Scan the expression from left to right, push operants onto the stack,

until an operator is found

2 3 + 6 3 / -
↑
Stack:

3
2

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 24 / 72

Instruction Formats CPU Data

Evaluating Postfix Expression: Example: 2

Use a stack to evaluate the postfix expression 23 + 63/−:
1. Pop the operants and carry out the operation indicated by the

operator, and push the result back onto the stack

2 3 + 6 3 / -
↑
Stack:

5

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 25 / 72

Instruction Formats CPU Data

Evaluating Postfix Expression: Example: 3

Use a stack to evaluate the postfix expression 23 + 63/−:
1. Push operants until another operator is found

2 3 + 6 3 / -
↑

Stack:
3
6
5

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 26 / 72

Instruction Formats CPU Data

Evaluating Postfix Expression: Example: 4

Use a stack to evaluate the postfix expression 23 + 63/−:
1. Pop the operants and carry out the operation indicated by the

operator, and push the result back onto the stack

2 3 + 6 3 / -
↑

Stack:
2
5

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 27 / 72

Instruction Formats CPU Data

Evaluating Postfix Expression: Example: 5

Use a stack to evaluate the postfix expression 23 + 63/−:
1. Find another operator, pop the operants and carry out the operation

indicated by the operator, and push the result back onto the stack.

2 3 + 6 3 / -
↑

Stack:
3

The answer is on the top of the stack

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 28 / 72

Instruction Formats CPU Data

Infix Expression Evaluation Example: Comparison

Let’s see how to evaluate an infix expression such as

Z = (X + Y) ∗ (W − U)

using different instruction formats such as
▶ three-address ISA
▶ two-address ISA
▶ one-address ISA
▶ stack ISA

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 29 / 72

Instruction Formats CPU Data

Infix Expression Evaluation Example: Three-Address ISA

Let’s see how to evaluate an infix expression such as

Z = (X + Y) ∗ (W − U)

using three-address ISA

ADD R1 , X, Y
SUBR R2 , W, U
MULT Z , R1 , R2

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 30 / 72

Instruction Formats CPU Data

Infix Expression Evaluation Example: Two-Address ISA

Let’s see how to evaluate an infix expression such as

Z = (X + Y) ∗ (W − U)

using two-address ISA

LOAD R1 , X
ADD R1 , Y
LOAD R2 , W
SUBR R2 , U
MULT R1 , R2
STORE Z , R1

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 31 / 72

Instruction Formats CPU Data

Infix Expression Evaluation Example: One-Address ISA

Let’s see how to evaluate an infix expression such as

Z = (X + Y) ∗ (W − U)

using one-address ISA

LOAD X
ADD Y
STORE TEMP
LOAD W
SUBR U
MULT TEMP
STORE Z

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 32 / 72

Instruction Formats CPU Data

Infix Expression Evaluation Example: Stack ISA

Let’s see how to evaluate an infix expression such as

Z = (X + Y) ∗ (W − U)

using stack ISA

PUSH X
PUSH Y
ADD
PUSH W
PUSH U
SUBR
MULT
POP Z

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 33 / 72

Instruction Format

Table of Contents

1 Lesson Objectives

2 Instruction Formats
Byte Ordering
CPU Data

3 Instruction Format

4 Instruction Types

5 Addressing

6 Instruction Pipelining

7 Real-World Examples

8 Summary and Q&A

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 34 / 72

Instruction Format

Instruction Length

It can be affected by the number of operands supported by the ISA.
▶ In any instruction set, not all instructions require the same number of

operands.
▶ Operations that require no operands, such as HALT, necessarily waste

some space when fixed-length instructions are used.
▶ One way to recover some of this space is to use expanding opcodes.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 35 / 72

Instruction Format

Opcode Consideration: Example

Assume that a system has 16 registers and 4K of memory.
▶ Need 4 bits to access one of the registers.
▶ Also need 12 bits for a memory address.

If the system is to have 16-bit instructions, we have two choices for the
instructions:

opcode addr 1 addr 2 addr 3

opcode addr

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 36 / 72

Instruction Format

Varying Opcode Length

If we allow the length of the opcode to vary, we could create a very rich
instruction set.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 37 / 72

Instruction Format

Varying Opcode Length: Example

Given 8-bit instructions, is it possible to allow the following to be
encoded?
▶ 3 instructions with 2 3-bit operands
▶ 2 instructions with 1 4-bit operand
▶ 4 instructions with 1 3-bit operand

We need:
▶ 3 × 23 × 23 = 192
▶ 2 × 24 = 32
▶ 4 × 23 = 32

Total: 196 + 32 + 32 = 256 bit patterns. With a total of 256 bit patterns
required, we can exactly encode our instruction set in 8 bits! (28 = 256)

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 38 / 72

Instruction Format

Varying Opcode Length: Example Instructions

00 xxx xxx
instructions with 2 3-bit operands01 xxx xxx

10 xxx xxx
11 espcape code
1100 xxxx instructions with 1 4-bit operand1101 xxxx
1110 escape code
1111 escape code
11100 xxx

instructions with 1 3-bit operands11101 xxx
11110 xxx
11111 xxx

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 39 / 72

Instruction Types

Table of Contents

1 Lesson Objectives

2 Instruction Formats
Byte Ordering
CPU Data

3 Instruction Format

4 Instruction Types

5 Addressing

6 Instruction Pipelining

7 Real-World Examples

8 Summary and Q&A

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 40 / 72

Instruction Types

Instruction Types

Instructions fall into several broad categories:
▶ Data movement.
▶ Arithmetic.
▶ Boolean.
▶ Bit manipulation.
▶ I/O.
▶ Control transfer.
▶ Special purpose.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 41 / 72

Addressing

Table of Contents

1 Lesson Objectives

2 Instruction Formats
Byte Ordering
CPU Data

3 Instruction Format

4 Instruction Types

5 Addressing

6 Instruction Pipelining

7 Real-World Examples

8 Summary and Q&A

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 42 / 72

Addressing

Addressing

▶ Addressing modes specify where an operand is located.
▶ They can specify a constant, a register, or a memory location.
▶ The actual location of an operand is its effective address.
▶ Certain addressing modes allow us to determine the address of an

operand dynamically.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 43 / 72

Addressing

Addressing Modes

▶ Immediate addressing is where the data is part of the instruction.
▶ Direct addressing is where the address of the data is given in the

instruction.
▶ Register addressing is where the data is located in a register.
▶ Indirect addressing gives the address of the address of the data in the

instruction.
▶ Register indirect addressing uses a register to store the address of the

address of the data.
▶ Indexed addressing uses a register (implicitly or explicitly) as an

offset, which is added to the address in the operand to determine the
effective address of the data.

▶ Based addressing is similar except that a base register is used instead
of an index register.

▶ In stack addressing the operand is assumed to be on top of the stack.
H. Chen (CUNY-BC) Computer Architecture November 21, 2023 44 / 72

Addressing

Address Modes: Variations

There are many variations to these addressing modes including:
▶ Indirect indexed.
▶ Base/offset.
▶ Self-relative.
▶ Auto increment—decrement.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 45 / 72

Addressing

Addressing Modes: Example

For the instruction shown, what value is loaded into the accumulator for
each addressing mode?

Memory
Addr Content

0x800 0x900
. . .

0x900 0x1000
. . .

0x1000 0x500
. . .

0x1100 0x600
0x1600 0x700

Register
R1 0x800

Instruction: LOAD 800
Mode Value → AC

Immediate
Direct

Indirect
Indexed

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 46 / 72

Addressing

Addressing Modes: Example

For the instruction shown, what value is loaded into the accumulator for
each addressing mode?

Memory
Addr Content

0x800 0x900
. . .

0x900 0x1000
. . .

0x1000 0x500
. . .

0x1100 0x600
0x1600 0x700

Register
R1 0x800

Instruction: LOAD 800
Mode Value → AC

Immediate 0x800
Direct 0x900

Indirect 0x1000
Indexed 0x700

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 47 / 72

Instruction Pipelining

Table of Contents

1 Lesson Objectives

2 Instruction Formats
Byte Ordering
CPU Data

3 Instruction Format

4 Instruction Types

5 Addressing

6 Instruction Pipelining

7 Real-World Examples

8 Summary and Q&A

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 48 / 72

Instruction Pipelining

Instruction Pipelining and Instruction Level Parallelism

▶ Some CPUs divide the fetch-decode-execute cycle into smaller steps.
▶ These smaller steps can often be executed in parallel to increase

throughput.
▶ Such parallel execution is called instruction pipelining.
▶ Instruction pipelining provides for instruction level parallelism (ILP)

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 49 / 72

Instruction Pipelining

Example Setup

Suppose a fetch-decode-execute cycle were broken into the following
smaller steps:

1. Fetch instruction
2. Decode opcode
3. Calculate effective address of operands
4. Fetch operands
5. Execute instruction
6. Store result

Suppose we have a six-stage pipeline.
1. S1 fetches the instruction,
2. S2 decodes it,
3. S3 determines the address of the operands,
4. S4 fetches them,
5. S5 executes the instruction, and
6. S6 stores the result.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 50 / 72

Instruction Pipelining

Pipelining

For every clock cycle, one small step is carried out, and the stages are
overlapped

Clock Cycle 1 2 3 4 5 6
Instruction 1 Step S1 S2 S3 S4 S5 S6
Instruction 2 Step S1 S2 S3 S4 S5 S6

.

▶ S1. Fetch instruction.
▶ S2. Decode opcode.
▶ S3. Calculate effective address

of operands.

▶ S4. Fetch operands.
▶ S5. Execute.
▶ S6. Store result.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 51 / 72

Instruction Pipelining

Completion Time with Pipeline

To determine the theoretical speedup offered by a pipeline, we estimate
the time to complete n instructions (tasks).
▶ Assume a k-stage pipeline
▶ An instruction represents a task, Ti, i = 1, 2, . . . n, . . ., in the pipeline.
▶ Let tp be the time per stage.
▶ T1 requires ktp time to complete in the k-stage pipeline.
▶ T2 – Tn emerge from the pipeline one per cycle. So the total time to

complete the remaining tasks is (n − 1)tp.
▶ Thus, to complete n tasks using the k-stage pipeline requires:

(ktp) + (n − 1)tp = (k + n − 1)tp

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 52 / 72

Instruction Pipelining

Completion Time without Pipeline

Clock Cycle 1 2 3 4 5 6 7 8 9 10 11 12
Step S1 S2 S3 S4 S5 S6 S1 S2 S3 S4 S5 S6

Instruction 1 Instruction 2

To complete n tasks without a pipeline requires: ntn = nktp.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 53 / 72

Instruction Pipelining

Speedup

The speedup using the pipeline is then,

Speedup S = ntn

(ktp) + (n − 1)tp
= nktp

(k + n − 1)tp

Considering that CPU executes many instructions, we have the theatrical
speedup (maximum speedup),

lim
n→∞

S = lim
n→∞

ntn

(k + n − 1)tp

= lim
n→∞

nktp

(k + n − 1)tp

= lim
n→∞

n

(k + n − 1)tp

ktp

tp

= ktp

tp
= k

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 54 / 72

Instruction Pipelining

Max Speedup

Max Speedup cannot be obtained when:
▶ the architecture supports fetching instructions and data in parallel.
▶ the pipeline can be kept filled at all times.

which are not always the case.
▶ Pipeline hazards arise that cause pipeline conflicts and stalls.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 55 / 72

Instruction Pipelining

Pipeline Hazards

An instruction pipeline may stall, or be flushed for any of the following
reasons:
▶ Resource conflicts.
▶ Data dependencies.
▶ Conditional branching.

Measures can be taken at the software level as well as at the hardware
level to reduce the effects of these hazards, but they cannot be totally
eliminated.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 56 / 72

Instruction Pipelining

Pipeline Hazards: Example

Consider the two sequential statements X = Y + 3 and Z = 2 * X that
each can be realized via an instruction.

Time Period 1 2 3 4 5

X = Y + 3 fetch instruction decode fetch execute & store X
Z = 2 * X fetch instruction decode fetch X

The problem arises at time period 4.
▶ The second instruction needs to fetch X,
▶ but the first instruction does not store the result until the execution is

finished,
▶ so X is not available at the beginning of the time period.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 57 / 72

Real-World Examples

Table of Contents

1 Lesson Objectives

2 Instruction Formats
Byte Ordering
CPU Data

3 Instruction Format

4 Instruction Types

5 Addressing

6 Instruction Pipelining

7 Real-World Examples

8 Summary and Q&A

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 58 / 72

Real-World Examples

Brief Introduction of Several Real-World Architectures

▶ Intel
▶ MISC
▶ ARM
▶ JVM

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 59 / 72

Real-World Examples

Intel

Pipelining
▶ Intel introduced pipelining to their processor line with its Pentium

chip.
▶ The first Pentium had two 5-stage pipelines. Each subsequent

Pentium processor had a longer pipeline than its predecessor with the
Pentium IV having a 24-stage pipeline.

▶ The Itanium (IA-64) has only a 10-stage pipeline

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 60 / 72

Real-World Examples

Intel

Addressing Modes
▶ Intel processors support a wide array of addressing modes.
▶ The original 8086 provided 17 ways to address memory, most of them

variants on the methods presented in this module.
▶ Owing to their need for backward compatibility, the Pentium chips

also support these 17 addressing modes.
▶ The Itanium, having a RISC core, supports only one: register indirect

addressing with optional post increment.
What is RISC?

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 61 / 72

Real-World Examples

MISC

MIPS was an acronym for Microprocessor Without Interlocked Pipeline
Stages.
▶ The architecture is little endian and word-addressable with

three-address, fixed-length instructions.
▶ Like Intel, the pipeline size of the MIPS processors has grown:

▶ The R2000 and R3000 have five-stage pipelines;
▶ the R4000 and R4400 have 8-stage pipelines.
▶ The R10000 has three pipelines: A five-stage pipeline for integer

instructions, a seven-stage pipeline for floating-point instructions, and a
six-state pipeline for LOAD/STORE instructions.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 62 / 72

Real-World Examples

MISC

Addressing Modes
▶ In all MIPS ISAs, only the LOAD and STORE instructions can access

memory.
▶ The ISA uses only base addressing mode.
▶ The assembler accommodates programmers who need to use

immediate, register, direct, indirect register, base, or indexed
addressing modes.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 63 / 72

Real-World Examples

JVM

The Java programming language is an interpreted language that runs in a
software machine called the Java Virtual Machine (JVM).
▶ A JVM is written in a native language for a wide array of processors,

including MIPS and Intel.
▶ Like a real machine, the JVM has an ISA all of its own, called

bytecode. This ISA was designed to be compatible with the
architecture of any machine on which the JVM is running.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 64 / 72

Real-World Examples

JVM

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 65 / 72

Real-World Examples

JVM

▶ Java bytecode is a stack-based language.
▶ Most instructions are zero address instructions.
▶ The JVM has four registers that provide access to five regions of

main memory.
▶ All references to memory are offsets from these registers. Java uses

no pointers or absolute memory references.
▶ Java was designed for platform interoperability, not performance!

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 66 / 72

Real-World Examples

ARM

▶ ARM is a load/store architecture: all data processing must be
performed on values in registers, not in memory.

▶ It uses fixed-length, three-operand instructions and simple addressing
modes.

▶ ARM processors have a minimum of a three-stage pipeline (consisting
of fetch, decode, and execute);

▶ Newer ARM processors have deeper pipelines (more stages). Some
ARM8 implementations have 13-stage integer pipelines.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 67 / 72

Real-World Examples

ARM

▶ ARM has 37 total registers but their visibility depends on the
processor mode.

▶ ARM allows multiple register transfers.
▶ It can simultaneously load or store any subset of the16

general-purpose registers from/to sequential memory addresses.
▶ Control flow instructions include unconditional and conditional

branching and procedure calls
▶ Most ARM instructions execute in a single cycle, provided there are

no pipeline hazards or memory accesses.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 68 / 72

Summary and Q&A

Table of Contents

1 Lesson Objectives

2 Instruction Formats
Byte Ordering
CPU Data

3 Instruction Format

4 Instruction Types

5 Addressing

6 Instruction Pipelining

7 Real-World Examples

8 Summary and Q&A

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 69 / 72

Summary and Q&A

Summary and Q&A

▶ ISAs are distinguished according to
▶ their bits per instruction,
▶ number of operands per instruction, and
▶ operand location and types and sizes of operands.

▶ Endianness as another major architectural consideration.
▶ CPU can store data based on:

▶ A stack architecture
▶ An accumulator architecture
▶ A general purpose register architecture.

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 70 / 72

Summary and Q&A

Summary and Q&A

▶ Instructions can be fixed length or variable length.
▶ To enrich the instruction set for a fixed length instruction set,

expanding opcodes can be used.
▶ The addressing mode of an ISA is also another important factor.

▶ Immediate
▶ Direct
▶ Register
▶ Register Indirect
▶ Indirect
▶ Indexed
▶ Based
▶ Stack

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 71 / 72

Summary and Q&A

Summary and Q&A

▶ A k-stage pipeline can theoretically produce execution speedup of k as
compared to a non-pipelined machine.

▶ Pipeline hazards such as resource conflicts and conditional branching
prevents this speedup from being achieved in practice.

Example architectures
▶ Intel, MIPS, JVM, and ARM architectures

H. Chen (CUNY-BC) Computer Architecture November 21, 2023 72 / 72

	Lesson Objectives
	Instruction Formats
	Byte Ordering
	CPU Data

	Instruction Format
	Instruction Types
	Addressing
	Instruction Pipelining
	Real-World Examples
	Summary and Q&A

