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Lesson Objectives

Lesson Objectives

Students are expected to be able to
1. describe the fundamentals of numerical data representation and

manipulation in digital computers;
2. convert between various radix systems;
3. convert and perform arithmetic in signed integer representations;
4. explain how errors can occur in computations because of overflow and

truncation;
5. express floating numbers in floating-point representation;
6. recognize the most popular character codes; and
7. describe the concepts of error detecting and correcting codes.
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Real Number Values

Real Number Values

Your math classes introduce the concept of real number

Scientific or business applications deal with real number values.

Signed integer representations are not adequate.

Floating-point representation solves this problem.
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Floating-Point Representation

Floating-point Numbers

Floating-point numbers allow an arbitrary number of decimal places to the
right of the decimal point.

For example: 0.5 × 0.25 = 0.125

They are often expressed in scientific notation.

For example:

0.125 = 1.25 × 10−1

5, 000, 000.0 = 5.0 × 106
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Floating-Point Representation

Scientific Notation

Computers use a form of scientific notation for floating-point
representation

Numbers written in scientific notation have three components:

+1.25 × 10−1

▶ +: sign
▶ 1.25: mantissa
▶ 10−1: exponent
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Floating-Point Representation

Floating-Point Representation

Computer representation of a floating-point number consists of three
fixed-size fields:

Sign Exponent Significant

which is the standard arrangement of these fields.

Significant vs. mantissa
▶ “significand” and “mantissa” do not technically mean the same thing

despite that many people use these terms interchangeably.
▶ In this class, “significand” is referred to the fractional part of a

floating point number.
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Floating-Point Representation

Designing Floating-Point Representation

Sign Exponent Significant

Given N bits to represent a floating point number, we decide
▶ Sign: 1 bit, indicating the sign of the stored value, typically,

▶ 0: positive number
▶ 1: negative number

▶ The size of the exponent field determines the range of values that can
be represented.

▶ The size of the significand determines the precision of the
representation.
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Floating-Point Representation Example of a Simple (but Flawed) Model

Example: a 14-bit Simple Model

A hypothetical “Simple Model” to explain the concepts.
▶ A floating-point number is 14 bits in length.
▶ The exponent field is 5 bits.
▶ The significand field is 8 bits.

Exponent Significant
Sign

▶ The significand is always preceded by an implied binary point.
▶ Thus, the significand always contains a fractional binary value.
▶ The exponent indicates the power of 2 by which the significand is

multiplied.
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Floating-Point Representation Example of a Simple (but Flawed) Model

14-bit Simple (but Flawed) Model: Example

Express 3210 in the simple 14-bit floating-point model.
1. We know that 32 = 25, rewrite it in (binary) scientific notation

3210 = 1.02 × 25 = 0.12 × 26

2. In a moment, we’ll explain why we prefer the second notation
(0.1 × 26) versus the first (1.0 × 25). Nevertheless, we have
▶ Sign: “+”, so 0
▶ Exponent: 610 = 1102
▶ Significant: 110 = 12 with the implied binary point

3. Using this information, we put 1102 (because 001102 = 610) in the
exponent field and 1 in the significand as shown.

0 0 0 1 1 0 1 0 0 0 0 0 0 0
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Floating-Point Representation Example of a Simple (but Flawed) Model

14-bit Simple (but Flawed) Model: Multiple
Representations?

Express 3210 in the simple 14-bit floating-point model.

We can have equivalent scientific notation, and consequently multiple
equivalent floating-point representations.

32 = 0.12 × 26

0 0 0 1 1 0 1 0 0 0 0 0 0 0

32 = 0.012 × 27

0 0 0 1 1 1 0 1 0 0 0 0 0 0

32 = 0.0012 × 28

0 0 1 0 0 0 0 0 1 0 0 0 0 0

32 = 0.00012 × 29

0 0 1 0 0 1 0 0 0 1 0 0 0 0
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Floating-Point Representation Example of a Simple (but Flawed) Model

Flawed Model: Multiple Representations Are Bad!

The simple model introduced is good to understand some basics of
floating-point representations, but the model is flawed!
▶ It allows multiple synonymous representations, which

▶ waste space, and
▶ cause confusion.

▶ The bigger problem is that the simple model does not allow negative
exponents.
▶ We have no way to express 0.5 (= 2-1)! (Notice that there is no sign

in the exponent field.)
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Floating-Point Representation Simple but Improved Model

Floating-Point Representation (without the Flaws)

▶ Normalization: disallows synonymous forms.
▶ Biased exponent: allow both positive and negative exponents.
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Floating-Point Representation Simple but Improved Model

Floating-Point Representation: Normalization

Establish a “normalization” rule so that synonymous form are disallowed
▶ Approach 1 (no implied bits). The first digit of the significand must

be 1, with no ones to the left of the radix point.
▶ All significands must have the form 0.1xxxxxxxx
▶ For example, 4.5 = 100.12 × 20 = 1.001 × 22 = 0.1001 × 23. The last

expression is correctly normalized in Approach 1.
▶ Approach 2 (with implied bits). The significant has an implied 1 to

the LEFT of the radix point (IEEE-754).
▶ All significands must have the form 1.1xxxxxxxx with the leftmost 1

implied
▶ For example, 4.5 = 100.12 × 20 = 1.001 × 22. The significant would

include only 001 (with unwritten 1 to the left of the radix point).
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Floating-Point Representation Simple but Improved Model

Floating-Point Representation: Biased Exponent

The exponent are “unsigned”, how do we provide both negative, positive,
and 0 exponent?

Use excess-M representation
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Floating-Point Representation Simple but Improved Model

Floating-Point Representation: Biased Exponent

To provide for negative exponents, we will use a biased exponent.
▶ In our simple model, we have a 5-bit exponent. Since

25−1 − 1 = 24 − 1 = 15

We adopt the excess-15 representation for the exponent with bias 15.
▶ which means

▶ exponent values less than 15 are negative,
▶ exponent values greater than 15 are positive, and
▶ the bias exponent value is 0
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Floating-Point Representation Simple but Improved Model

Simple but Improved Model: Example 1

Express 3210 in the revised 14-bit floating-point model.

We know that 3210 = 1.02 × 25 = 0.12 × 26.
1. Sign: 0 for “+”
2. Exponent: To use our excess 15 biased exponent, we add 15 to 6,

which yields 2110 = 101012.
3. Significant: 0.12

So we have:

0 1 0 1 0 1 1 0 0 0 0 0 0 0
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Floating-Point Representation Simple but Improved Model

Simple but Improved Model: Example 2

Express 0.062510 in the revised 14-bit floating-point model.

We know that 0.062510 = 1.02 × 2−4 = 0.12 × 2−3.
1. Sign: 0 for “+”
2. Exponent: To use our excess 15 biased exponent, we add 15 to -3,

which yields 1210 = 011002.
3. Significant: 0.12

So we have:

0 0 1 1 0 0 1 0 0 0 0 0 0 0
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Floating-Point Representation Simple but Improved Model

Simple but Improved Model: Example 3

Express −26.62510 in the revised 14-bit floating-point model.

We know that
26.62510 = 11010.1012 = 11010.1012 × 20 = 0.110101012 × 25.

1. Sign: 1 for “-”
2. Exponent: To use our excess 15 biased exponent, we add 15 to 5,

which yields 2010 = 101002.
3. Significant: 0.110101012

So we have:

1 1 0 1 0 0 1 1 0 1 0 1 0 1
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Floating-Point Representation IEEE Floating-Point Standard

IEEE Standard

The IEEE has established a standard called IEEE-754 for floating-point
numbers, which are followed by most programming languages.

Common Name Width Significand Exponent JavaName Bits Bits

Half Binary16 16 10 5Precision

Single Binary32 32 23 8 floatPrecision

Double Binary64 64 52 11 doublePrecision

Quadruple Binary128 128 112 15Precision

Octuple Binary256 256 236 19Precision
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Floating-Point Representation IEEE Floating-Point Standard

IEEE Standard: Significant With Implied Bits

In IEEE Standard, the significant has an implied 1 to the LEFT of the
radix point (IEEE-754).
▶ All significands must have the form 1.1xxxxxxxx with the leftmost 1

implied
▶ For example, 4.5 = 100.12 × 20 = 1.001 × 22. The significant would

include only 001 (with unwritten 1 to the left of the radix point).
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Floating-Point Representation IEEE Floating-Point Standard

IEEE Standard: Example

Express −3.75 as a floating-point number using IEEE single precision.

First, let’s normalize the number according to IEEE rules:

−3.7510 = −11.112 = −1.111 × 21

So,
▶ Sign: 1 for “-”
▶ Exponent: The bias is 011111112 = 27 − 1 = 12710. The exponent in

excess-127 is (127 + 1)10 = 12810 = 100000002
▶ Significand: .111 with implied 1 to the left of the radix point

1 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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Special Float-Point Values

IEEE Standard: Special Values

Using the IEEE-754 single precision floating point standard:
▶ An exponent of 25510 = 11111111 indicates a special value.

▶ If the significand is zero, the value is −∞ (- (infinity)) or +∞ (+
(infinity)) according to the sign bit.

▶ If the significand is nonzero, the value is NaN, “not a number,” often
used to flag an error condition.

Using the double precision standard:
▶ An exponent of 204710 = 11111111111 indicates a special value. The

rest are the same.
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Special Float-Point Values

Floating Point Representation: +0.0 and -0.0

Both the 14-bit model that we have presented and the IEEE-754 floating
point standard allow two representations for zero.
▶ Zero is indicated by all zeros in the exponent and the significand, but

the sign bit can be either 0 or 1.
Although negative zero and positive zero do not have equal bit values,
programming languages often evaluate +0.0 == -0.0 to be true.

An interesting and informing discussion is in Java API documentation:
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/
lang/Double.html#equivalenceRelation
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Floating-Point Arithmetic

Floating Point Representation: Arithmetic: Addition

Floating-point addition and subtraction are done using methods analogous
to how we perform calculations using pencil and paper.

1. Express both operands in the same exponential power,
2. then add/subtract the numbers, preserving the exponent in the sum.
3. If the exponent requires adjustment, we do so at the end of the

calculation.
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Floating-Point Arithmetic

Floating-Point Representation: Addition: Example 1

Find the sum of 1210 and 1.2510 using the 14-bit “simple but improved”
floating-point model.

1. We find 1210 = 0.11002 × 24, and
1.2510 = 0.1012 × 21 = 0.0001012 × 24. Express them in our model.

2. Add the numbers
0 1 0 0 1 1 1 1 0 0 0 0 0 0

+ 0 1 0 0 1 1 0 0 0 1 0 1 0 0
= 0 1 0 0 1 1 1 1 0 1 0 1 0 0

Thus, the result is 0.1101012 × 24.
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Floating-Point Arithmetic

Floating-Point Representation: Subtraction: Example 2

Find the sum of 1210 and −1.2510 using the 14-bit “simple but improved”
floating-point model.
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Floating-Point Arithmetic

Floating Point Representation: Arithmetic: Multiplication

Floating-point multiplication is also carried out in a manner akin to how
we perform multiplication using pencil and paper.
▶ We multiply the two operands and add their exponents.
▶ If the exponent requires adjustment, we do so at the end of the

calculation.
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Floating-Point Arithmetic

Floating Point Representation: Arithmetic: Multiplication:
Example 3

Find the product of 1210 and 1.2510 using the 14-bit floating-point model.
1. We find 1210 = 0.11002 × 24. And 1.2510 = 0.1012 × 21.
2. Thus, our product is 0.01111002 × 25 = 0.1111 × 24.
3. The normalized product requires an exponent of

(15 + 4)10 = 1910 = 100112
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Floating-Point Errors

Floating-Point Errors

No matter how many bits we use in a floating-point representation, our
model must be finite.

But the real number system is, of course, infinite, so our models can give
nothing more than an approximation of a real value.

At some point, every model breaks down, introducing errors into our
calculations.

By using a greater number of bits in our model, we can reduce these
errors, but we can never totally eliminate them.
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Floating-Point Errors

Be Aware of Floating-Point Errors

Our job becomes one of reducing error, or at least being aware of the
possible magnitude of error in our calculations.

We must also be aware that errors can compound through repetitive
arithmetic operations.
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Floating-Point Errors

Floating-Point Errors Can be Amplified!

For example, our 14-bit model cannot exactly represent the decimal value
128.5. In binary, it is 9 bits wide: 10000000.12 = 128.510

When we try to express 128.510 in our 14-bit model, we lose the low-order
bit, giving a relative error of:

128.5 − 128
128.5 ≈ 0.39%

If we had a procedure that repetitively added 0.5 to 128.5, we would have
an error of nearly 2% after only four iterations.
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Floating-Point Errors

Tips to Reduce Floating Point Errors

Floating-point errors can be reduced when we use operands that are
similar in magnitude.

If we were repetitively adding 0.5 to 128.5, it would have been better to
iteratively add 0.5 to itself and then add 128.5 to this sum.

In this example, the error was caused by loss of the low-order bit.

Loss of the high-order bit is more problematic.
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Floating-Point Errors

Be Aware of Floating-Point Overflow/Underflow

Floating-point overflow and underflow can cause programs to crash.
▶ Overflow occurs when there is no room to store the high-order bits

resulting from a calculation.
▶ Underflow occurs when a value is too small to store, possibly resulting

in division by zero.
Experienced programmers know that it’s better for a program to crash
than to have it produce incorrect, but plausible, results.
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Floating-Point Errors

Range, Precision, and Accuracy

When discussing floating-point numbers, it is important to understand the
terms range, precision, and accuracy.
▶ The range of a numeric integer format is the difference between the

largest and smallest values that can be expressed.
▶ Accuracy refers to how closely a numeric representation approximates

a true value.
▶ The precision of a number indicates how much information we have

about a value.
Most of the time, greater precision leads to better accuracy, but this is not
always true.
▶ For example: 3.1333 is a value of pi that is accurate to two digits, but

has 5 digits of precision.
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Floating-Point Errors

Commutative or Distributive?

Because of truncated bits, you cannot always assume that a particular
floating point operation is commutative or distributive. This means that
we cannot assume:
▶ (a + b) + c = a + (b + c) or
▶ a(b + c) = ab + ac
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Floating-Point Errors

Testing Equality?

To test a floating point value for equality to some other number, it is best
to declare a “nearness to x” epsilon value.
▶ For example, instead of checking to see if floating point x is equal to

2 as follows:
if (x == 2.) {

//...
}

it is better to use:
if (abs(x - 2) < epsilon) {

// ...
}

(assuming we have epsilon defined correctly!)
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Summary and Q&A

Summary and Q&A

You are expected to be able to
1. express floating numbers in floating-point representation;

Any questions on:
▶ Floating-Point Representation
▶ Example of a Simple (but Flawed) Model
▶ Simple but Improved Model
▶ IEEE Floating Point Standard
▶ Special Values
▶ Floating Point Arithmetic
▶ Floating Point Errors
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