Error Detection and Correction J

Hui Chen 2

2CUNY Brooklyn College, Brooklyn, NY, USA

September 11, 2023

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 1/31

Outline

@ Lesson Objectives
© Data Corruption

© Error Detection
@ Cyclic redundancy checking (CRC)

@ Error Correction
@ Hamming Code

© Summary and Q&A

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 2/31

Acknowledgement

The content of most slides come from the authors of the textbook:

Null, Linda, & Lobur, Julia (2018). The essentials of computer
organization and architecture (5th ed.). Jones & Bartlett Learning.

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 3/31

|Lesson Objectives |
Table of Contents

@ Lesson Objectives

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 4/31

Lesson Objectives

Students are expected to be able to

1. describe the fundamentals of numerical data representation and
manipulation in digital computers;

2. convert between various radix systems;
3. convert and perform arithmetic in signed integer representations;

4. explain how errors can occur in computations because of overflow and
truncation;

5. express floating numbers in floating-point representation;
6. recognize the most popular character codes; and

7. describe the concepts of error detecting and correcting codes.

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 5/31

... DataConuption
Table of Contents

© Data Corruption

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 6/31

Need for Error Detection and Correction

It is physically impossible for any data recording or transmission medium
to be 100% perfect 100% of the time over its entire expected useful life.

As more bits are packed onto a square centimeter of disk storage, as
communications transmission speeds increase, the likelihood of error
increases — sometimes geometrically.

Thus, error detection and correction is critical to accurate data
transmission, storage and retrieval.

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 7/31

... EworDetection
Table of Contents

© Error Detection
@ Cyclic redundancy checking (CRC)

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 8/31

Detecting Errors

Bit error: 0 - 1or1<«+0

How to detect if there is an error?

Check digits, appended to the end of a long number, can provide some
protection against data input errors, e.g.,
» The last characters of UPC barcodes and ISBNs are check digits (how
are they computed?).
» Parity Bit. A bit computed and added to a sequence of bits
» Even parity: even number of 1's including the parity bit
» Odd Parity: odd number of 1's including the parity bit
» What kind of bit errors can a single parity bit detect?

Longer data streams require more economical and sophisticated error
detection mechanisms.

» Cyclic redundancy checking (CRC) codes provide error detection for
large blocks of data.

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 9/31

R C!ic redundancy checking (CRC)
Introduction to CRC

CRCs are widely adopted error detection code, in particular, in data
communication networks, to detect transmission errors.

» transmit a 1 but receive a 0, or transmit a O but receive a 1

CRCs are polynomials over the modulo 2 arithmetic field.
The mathematical theory behind modulo 2 polynomials is beyond our

scope. However, we can easily work with it without knowing its theoretical
underpinnings.

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 10/31

_ Cyclic redundancy checking (CRC)
CRC Algorithm: Setup

Represent n-bit data (message M) as n-1 degree polynomial, e.g., 5-bit
data 11011 as

M(z) =1zt + 123 + 022 + 1! + 12 =2 423 + o + 1

Sender and receiver agrees on a divisor polynomial C(z) of degree k, e.g.,
a degree 3 divisor polynomial,

Clz)=23+22+1
which corresponds to 4-bit data: 1101

CRC is to generate an error detection code (denoted as E') consisting of
k — 1 bits.

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 11/31

_ Cyclic redundancy checking (CRC)
CRC Algorithm: Generating CRC Code

Algorithm generating M//E when given message M(x), divisor C(x)
1. Left shift M by k bits, i.e., T(x) = M (z)z"
> 11011 becomes 11011000
2. Compute remainder T'(z)/C(x)
> (x4 + 23+ z+ 1)x3/(23 + 22 + 1), we get quotient Q(z) = z* + 1,
remainder R(x) = 22 + 1
3. Subtract R(x) from T'(x), the result is M//E
> e+) - (2?2 +) ="+ a8+t 4?41

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 12/31

R C!ic redundancy checking (CRC)
CRC: Error Detection

Algorithm verifying received message where received message represented
as polynomial T(x)

1. Calculate remainder of T'(z)/C(x)

2. If the remainder is not 0, an error

3. Otherwise, no errors detected (which does not mean there is no error)

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 13/31

. EroorComection
Table of Contents

@ Error Correction
@ Hamming Code

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 14 /31

Need for Error Correction

Data transmission errors are easy to fix once an error is detected, i.e.,

P> Just ask the sender to transmit the data again, in particular, when
retransmission is cheap.

However these might be what we desire
» when retranmission is expensive (like in wireless networks), or

P in computer memory and data storage, this cannot be done because

too often the only copy of something important is in memory or on
disk.

Thus, to provide data integrity over the long term, we want to detect and
correct errors, i.e., error correcting codes are required.

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 15/31

Error Correction Codes

Hamming codes and Reed-Solomon codes are two important error
correcting codes.

Reed-Solomon codes are particularly useful in correcting burst errors that
occur when a series of adjacent bits are damaged.

Because CD-ROMs are easily scratched, they employ a type of
Reed-Solomon error correction.

Because the mathematics of Hamming codes is much simpler than
Reed-Solomon, we discuss Hamming codes in detail.

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 16 /31

Hamming Distance

Hamming codes are code words formed by adding redundant check bits, or
parity bits, to a data word.

The Hamming distance between two code words is the number of bits in
which two code words differ.
» The following two words have a Hamming distance of 3 because 3
bits are different 1000 1001
1011 0001

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 17/31

Minimum Distance of a Code

The minimum Hamming distance for a code, D,,;, is the smallest
Hamming distance between all pairs of words in the code. It determines its
error detecting and error correcting capability.
» For any code word, X, to be interpreted as a different valid code
word, Y, at least D,,;, single-bit errors must occur in X.

» Example. to detect k (or fewer) single-bit errors, a code must have a
Hamming distance of Dy, = k + 1.

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 18 /31

Minimum Distance and Error Correction

Hamming code is designed with D,,;,, = 2k + 1
» detect D,,n — 1 errors, and

> correct | Pmin=l| errors

where k is the number of errors that the code can correct in any data word.

Hamming distance is provided by adding a suitable number of parity bits
to a data word.

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 19/31

Design Consdieration

Suppose

» that we have a set of n-bit code words consisting of m data bits and
r (redundant) parity bits, also

> that we wish to detect and correct one single bit error only.

An error could occur in any of the n bits, so each code word can be
associated with n invalid code words at a Hamming distance of 1.

Therefore, we have n + 1 bit patterns for each code word: one valid code
word, and n invalid code words.

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 20/31

Determining r

Using n bits, we have 2" possible bit patterns. We have 2™ valid code
words with r check bits (where n = m + 7).

For each valid code word, we have (n + 1) bit patterns (1 legal and n
illegal).
This gives us the inequality:

(n+1) x 2™ < 2"

Because n = m + r, we can rewrite the inequality as:
(m+r+1) x2m < 2mtr
or
(m+r+1)<2"

This inequality gives us a lower limit on the number of check bits that we
need in our code words.

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 21/31

Determining r: Example 1

Suppose we have data words of length m = 4. Then:
4+r+1)<2

which implies that r must be greater than or equal to 3.

» We should always use the smallest value of r that makes the
inequality true.

which means to build a code with 4-bit data words that will correct
single-bit errors, we must add 3 check bits.

You have just done the hard part, i.e., to find the number of check bits.
The rest is easy.

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 22/31

Determining r: Example 2
Suppose we have data words of length m = 8. Then:
8+r+1)<2”
which implies that r must be greater than or equal to 4. Thus, to build a
code with 8-bit data words that will correct single-bit errors, we must add

4 check bits, creating code words of length 12.

Again, you have just done the hard part, i.e., to find the number of check
bits. The rest is easy.

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 23/31

e
Assigning Check Bits

So how do we assign values to these check bits? With code words of
length 12, we observe that each of the bits, numbered 1 though 12, can be
expressed in powers of 2. Thus:

1=2° 5=22+2° 9=2%+2°
2=2! 6=2%+2! 10=2%+2!
3=21420 7=22421 490 11=204+21 420
4 =22 8§ =23 12=23422. .

» 1 =29 contributes to all of the odd-numbered digits.
> 2 = 2! contributes to the digits, 2, 3, 6, 7, 10, and 11.
» and so forth ...

We can use this idea in the creation of our check bits.

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 24 /31

Assigning Check Bits: Approach

1. Using our code words of length 12, number each bit position starting
with 1 in the low-order bit.

2. Each bit position corresponding to a power of 2 will be occupied by a

check bit.

3. These check bits contain the parity of each bit position for which it
participates in the sum.

H. Chen (CUNY-BC)

9

P _
8 7 6 5

[\)
w

Computer Architecture

P

N~

P P
2 1
2t 20
September 11, 2023 25/31

Assigning Check Bits: Example

Since 1 = 29 contributes to the values 1, 3, 5, 7, 9, and 11, bit 1 will
check parity over bits in these positions.

Since = 2! contributes to the values 2, 3, 6, 7, 10, and 11, bit 2 will check
parity over these bits.

For the word 11010110, assuming even parity, we have a value of 1 for
check bit 1, and a value of 0 for check bit 2, which results in

1 1 0 1P O011POPP
12 11 10 9 8 7 6 5 4 3 2 1

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 26 /31

Assigning Check Bits: Example

The completed code word is shown above.
» Bit 1 checks the bits 1, 3, 5, 7, 9, and 11, so its value is 1 to ensure
even parity within this group.
» Bit 2 checks the bits 2, 3, 6, 7, 10, and 11, so its value is 0.
» Bit 4 checks the bits 4, 5, 6, 7, and 12, so its value is 1.
» Bit 8 checks the bits 8, 9, 10, 11, and 12, so its value is also 1.

1 1 0

1 011 P=1 0 P=0 P=1
12 11 10 9 8 7 6 5 4 3 2 1
23 22 21 20

Using the Hamming algorithm, we can not only detect single bit errors in
this code word, but also correct them!

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 27/31

Error Detection: Example

Suppose an error occurs in bit 5, as shown below. Our parity bit values
are:
> Bit 1 checks 1, 3, 5, 7, 9, and 11. This is incorrect as we have a total
of 3 ones (which is not even parity).

» Bit 2 checks bits 2, 3, 6, 7, 10, and 11. The parity is correct.

» Bit 4 checks bits 4, 5, 6, 7, and 12. This parity is incorrect, as we
have 3 ones.

> Bit 8 checks bit 8, 9, 10, 11, and 12. This parity is correct.

11 0 1 P=1 010 P=10 P=0 P=l
12 11 10 9 8 6 5 4 3 2 1

3 22 21 20

0
7

[\

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 28 /31

Error Correction: Example

Suppose an error occurs in bit 5, as shown below.

» We have erroneous parity for check bits 1 and 4.

> Bit 1 checks 1, 3, 5,7, 9, and 11. Bit 4 checks bits 4, 5, 6, 7, and 12.
The intersection of checked bits are 5, 7. If we flip any bits other
than 5 or 7, we make one parity correct, but not the other. We can
not flip 7, because 7 is also checked by Bit 4. Correct bit 5. More
generally, ...

» Which data bits are in error? We find out by adding the bit positions
of the erroneous bits.

» Simply, 1 + 4 = 5. This tells us that the error is in bit 5. If we
change bit 5 to a 1, all parity bits check and our data is restored.

1 1 0 1 P=1 0 1 0= P=1 0 P=0 P=1
12 11 10 9 8 7 6 5 4 3 2 1
23 22 21 20

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 29/31

. SsummayandQ&A
Table of Contents

© Summary and Q&A

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 30/31

. SummayandQA |
Summary and Q&A

You are expected to be able to
1. describe the concepts of error detecting and correcting codes;
Any questions on:
» Data Corruption
Error Detection

|

» Parity (even and odd parity)

» Cyclic redundancy checking (CRC)
| 4

Error Correction and Hamming Code

H. Chen (CUNY-BC) Computer Architecture September 11, 2023 31/31

	Lesson Objectives
	Data Corruption
	Error Detection
	Cyclic redundancy checking (CRC)

	Error Correction
	Hamming Code

	Summary and Q&A

