Digital Components: Combinational Circuits

Hui Chen^a

^aCUNY Brooklyn College, Brooklyn, NY, USA

October 6, 2023

H. Chen (CUNY-BC)

Computer Architecture

October 6, 2023

Outline

Lesson Objectives

2 Combinational Circuits

- Half Adder
- Full Adder
- Ripple-Carry Adder
- Decoder
- Multiplexer
- Shifter

3 Summary and Q&A

2 / 20

Acknowledgement

The content of most slides come from the authors of the textbook:

Null, Linda, & Lobur, Julia (2018). The essentials of computer organization and architecture (5th ed.). Jones & Bartlett Learning.

Table of Contents

Lesson Objectives

2 Combinational Circuits

• Half Adder

• Full Adder

- Ripple-Carry Adder
- Decoder
- Multiplexer
- Shifter

3 Summary and Q&A

Lesson Objectives

Students are expected to be able to

- 1. Apply Boolean algebra and functions.
- 2. Understand the relationship between Boolean logic and digital computer circuits.
- 3. Learn how to design simple logic circuits.
- 4. Understand how digital circuits work together to form complex computer systems.

5 / 20

Table of Contents

Lesson Objectives

2 Combinational Circuits

- Half Adder
- Full Adder
- Ripple-Carry Adder
- Decoder
- Multiplexer
- Shifter

3 Summary and Q&A

Combinational Circuits

Combinational logic circuits produce a specified output (almost) at the instant when input values are applied.

- Half adder
- Full adder
- Ripple-carry adder
- Decoders
- Multiplexer
- Shifter

Half Adder: Truth Table

Finds the sum of two bits.

Inputs		Outputs		
x	y	sum (s)	carry (c)	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

Half Adder

1.....

Finds the sum of two bits.

inputs		Outputs		
x	y	sum (s)	carry (c)	
0	0	0	0	
0	1	1	0	
1	0	1	0	
1	1	0	1	

A.....

Full Adder: Truth Table

Finds the sum of two bits and carry bit								
		Inputs	Outputs					
x	y	carry-in (c_{in})	sum (s)	carry-out (c_{out})				
0	0	0	0	0				
0	1	0	1	0				
1	0	0	1	0				
1	1	0	0	1				
0	0	1	1	0				
0	1	1	0	1				
1	0	1	0	1				
1	1	1	1	1				
Can	we	use the half adde	er as a com	ponent to construc	t a full adder?			

Full Adder

Finds the sum of two bits and carry bit

Ripple-Carry Adder

Connect full adders in series where the carry bit "ripples" from one adder to the next; hence, this configuration is called a ripple-carry adder.

Decoder

- Decoders are useful in selecting a memory location according a binary value placed on the address lines of a memory bus.
- Address decoders with n inputs can select any of 2^n locations.

Decoder: Example: 2-to-4 Decoder

This is what a 2-to-4 decoder looks like on the inside.

Multiplexer

- A multiplexer does just the opposite of a decoder.
- It selects a single output from several inputs.
- The particular input chosen for output is determined by the value of the multiplexer's control lines.
- To be able to select among n inputs, $\log_2 n$ control lines are needed.

Multiplexer: Example: 4-to-1 Multiplexer

A 4-to-1 multiplexer can be designed as follows.

Shifter

This shifter moves the bits of a nibble one position to the left or right.

Shifter: Design

This shifter moves the bits of a nibble one position to the left or right.

18 / 20

Table of Contents

Lesson Objectives

2 Combinational Circuits

• Half Adder

• Full Adder

- Ripple-Carry Adder
- Decoder
- Multiplexer
- Shifter

3 Summary and Q&A

Summary and Q&A

You are expected to be able to

- 1. Understand the relationship between Boolean logic and digital computer circuits.
- 2. Learn how to design simple logic circuits.

Any questions on:

- Half Adder
- Full Adder
- Ripple-Carry Adder
- Decoder
- Multiplexer
- Shifter