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Objectives

• Learn the components common to every modern 
computer system.

• Be able to explain how each component 
contributes to program execution.

• Understand a simple architecture invented to 
illuminate these basic concepts, and how it relates 
to some real architectures.

• Know how the program assembly process works.
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Introducing MARIE

• Bring together the ideas discussed to this point 
using a very simple model computer.

• MARIE Machine Architecture (Really Intuitive and 
Easy, or MARIE)

• designed for the singular purpose of illustrating basic 
computer system concepts.

• This system is very simple with limited potential.

• Nonetheless, a deep understanding of its functions 
will enable you to comprehend system 
architectures that are much more complex.
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Characteristics

• The MARIE architecture has the following 
characteristics:

• Binary, two's complement data representation.

• Stored program, fixed word length data and instructions.

• 4K words of word-addressable main memory.

• 16-bit data words.

• 16-bit instructions, 4 for the opcode and 12 for the 
address.

• A 16-bit arithmetic logic unit (ALU).

• Seven registers for control and data movement.
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MARIE’s Registers: (1) – (3)

• MARIE’s seven registers are:
• (1) Accumulator, AC, a 16-bit register that holds a 

conditional operator (e.g., "less than") or one operand 
of a two-operand instruction.

• (2) Memory address register, MAR, a 12-bit register that 
holds the memory address of an instruction or the 
operand of an instruction.  

• (3) Memory buffer register, MBR, a 16-bit register that 
holds the data after its retrieval from, or before its 
placement in memory.
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MARIE’s Registers: (4) – (7)

• (4) Program counter, PC, a 12-bit register that holds the 
address of the next program instruction to be executed.

• (5) Instruction register, IR, which holds an instruction 
immediately preceding its execution.

• (6) Input register, InREG, an 8-bit register that holds data 
read from an input device.

• (7) Output register, OutREG, an 8-bit register, that holds 
data that is ready for the output device.
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MARIE Architecture

• This is the MARIE architecture shown graphically.
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MARIE Architecture

• The registers are interconnected, and connected with 
main memory through a common data bus.

• Each device on the bus is identified by a unique number 
• that is set on the control lines whenever that device is 

required to carry out an operation.

• Separate connections are also provided 
• between the accumulator and the memory buffer register, 

and 

• the ALU and the accumulator and memory buffer register.

• This permits data transfer between these devices 
without use of the main data bus.
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MARIE’s 16-bit BUS

• This is the MARIE data 
path show graphically.
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Instruction Set

• A computer’s instruction set architecture (ISA) 
specifies 

• the format of its instructions, and 

• the primitive operations that the machine can perform.

• The ISA is an interface between a computer’s 
hardware and its software.

• Some ISAs include hundreds of different 
instructions for processing data and controlling 
program execution.

• The MARIE ISA consists of only 13 instructions.

10



Format of MARIE Instruction

• This is the format of a MARIE instruction:

• The fundamental MARIE instructions are:
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Instruction Example: LOAD

• This is a bit pattern for a LOAD instruction as it 
would appear in the IR:

• We see that 
• the opcode is 1, and 

• the address from which to load the data is 3.
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• This is a bit pattern for a SKIPCOND instruction as it would 
appear in the IR:

• We see that 
– the opcode is 8, and 
– bits 11 and 10 are 10, meaning that the next instruction will be 

skipped if the value in the AC is greater than zero.

Instruction Example: SKIPCOND
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Microoperations and RTL

• Each of our instructions actually consists of a 
sequence of smaller instructions called 
microoperations.

• The exact sequence of microoperations that are 
carried out by an instruction can be specified using 
register transfer language (RTL).

• In the MARIE RTL, we use the notation M[X] to 
indicate the actual data value stored in memory 
location X, and  to indicate the transfer of bytes 
to a register or memory location.
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RTL: Example

• The RTL for the LOAD instruction is:

• Similarly, the RTL for the ADD instruction is:

MAR  X

MBR  M[MAR]

AC  AC + MBR

MAR  X

MBR  M[MAR] 

AC  MBR
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More about SKIPCOND using RTL

• Recall that SKIPCOND skips the next instruction 
according to the value of the AC.

• The RTL for the this instruction is the most 
complex in our instruction set:

If IR[11 - 10] = 00 then

 If AC < 0 then PC  PC + 1

else If IR[11 - 10] = 01 then

 If AC = 0 then PC  PC + 1

else If IR[11 - 10] = 11 then

 If AC > 0 then PC  PC + 1
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Instruction Processing

• The fetch-decode-execute cycle is the series of steps 
that a computer carries out when it runs a program.

• We first have to fetch an instruction from memory, and 
place it into the IR.

• Once in the IR, it is decoded to determine what needs 
to be done next.

• If a memory value (operand) is involved in the 
operation, it is retrieved and placed into the MBR.

• With everything in place, the instruction is executed.

The next slide shows a flowchart of this process.
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Instruction Processing: Float Chart
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Instruction Processing: Interrupts

• All computers provide a way of interrupting the 
fetch-decode-execute cycle.

• Interrupts are asynchronous and indicate some 
type of service is required.

• Interrupts occur when:
• A user break (e.g., Control+C) is issued

• I/O is requested by the user or a program

• A critical error occurs

• Interrupts can be caused by hardware or software.
• Software interrupts are also called traps.
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Modifying Instruction Processing 
for Interrupts
• Interrupt processing involves adding another step 

to the fetch-decode-execute cycle as shown below.

The next slide shows a flowchart of “Process the interrupt.”
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Interrupt Processing
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More about Interrupts Processing

• For general-purpose systems, it is common to 
disable all interrupts during the time in which an 
interrupt is being processed.

• Typically, this is achieved by setting a bit in the flags 
register.

• Interrupts that are ignored in this case are called 
maskable.

• Nonmaskable interrupts are those interrupts that 
must be processed in order to keep the system in a 
stable condition.
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Interrupts and I/O

• Interrupts are very useful in processing I/O.

• However, interrupt-driven I/O is complicated, and 
is beyond the scope of our present discussion.

• We will look into this idea in greater detail later.

• MARIE, being the simplest of simple systems, 
uses a modified form of programmed I/O. 

• All output is placed in an output register (OutREG) and 
the CPU polls the input register (InREG) until input is 
sensed, at which time the value is copied into the 
accumulator.
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A Simple Program on MARIE

• Consider the simple MARIE program given below.  
We show a set of mnemonic instructions stored at 
addresses 0x100 – 0x106 (hex):
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Running the Simple Program: 1st 
Instruction
• Let’s look at what happens inside the computer 

when our program runs.

• This is the LOAD 104 instruction:
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Running the Simple Program: 2nd 
Instruction 
• Our second instruction is ADD 105:
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Introducing Assemblers

• Mnemonic instructions, such as LOAD 104, are 
easy for humans to write and understand.

• They are impossible for computers to understand.

• Assemblers translate instructions that are 
comprehensible to humans into the machine 
language that is comprehensible to computers

• We note the distinction between an assembler and a 
compiler

• In assembly language, there is a one-to-one 
correspondence between a mnemonic instruction and 
its machine code. 

• With compilers, this is not usually the case.
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Assembling Process

• Assemblers create an object program file from 
mnemonic source code in two passes.

1. During the first pass, the assembler assembles as 
much of the program as it can, while it builds a 
symbol table that contains memory references for 
all symbols in the program.

2. During the second pass, the instructions are 
completed using the values from the symbol 
table.
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Example: Pass 1

• Consider our example 
program at the right. 

• Note that we have 
included two 
directives HEX and 
DEC that specify the 
radix of the constants.

• The first pass, creates 
a symbol table and 
the partially-
assembled 
instructions as shown.
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Example: Pass 2

• After the second pass, the assembly is complete. 
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Indirect Addressing

• So far, all of the MARIE instructions that we have 
discussed use a direct addressing mode.

• This means that the address of the operand is 
explicitly stated in the instruction. 

• It is often useful to employ a indirect addressing, 
where the address of the address of the operand is 
given in the instruction.

• If you have ever used pointers in a program, you are 
already familiar with indirect addressing.
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Extending Our Instruction Set 
with Indirect Addressing

• We have included three indirect addressing mode 
instructions in the MARIE instruction set. 

• LOADI X

• STOREI X

• ADDI X

• JNS X

• CLEAR

32



LOADI X

• In RTL : 
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STOREI X

• In RTL : 
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ADDI X

• The ADDI instruction is a combination of LOADI 
X and ADD X:

• In RTL: 
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Subroutines

• Another helpful programming tool is the use of 
subroutines. 

• The jump-and-store instruction, JNS, gives us limited 
subroutine functionality. The details of the JNS instruction 
are given by the following RTL: 
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CLEAR

• All it does is set the contents of the accumulator to 
all zeroes.

• This is the RTL for CLEAR:

AC  0
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A Discussion on Decoding

• A computer’s control unit keeps things 
synchronized, making sure that bits flow to the 
correct components as the components are 
needed.

• There are two general ways in which a control unit 
can be implemented: hardwired control and 
microprogrammed control. 

• Hardwired controllers implement this program using 
digital logic components.

• With microprogrammed control, a small program is 
placed into read-only memory in the microcontroller.
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Control Unit

• The microoperations given by each RTL define the 
operation of MARIE’s control unit.

• Each microoperation consists of a distinctive signal 
pattern that is interpreted by the control unit and 
results in the execution of an instruction.

• Recall, the RTL for the Add instruction is:

MAR  X

MBR  M[MAR]

AC  AC + MBR
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Decoding

• Each of MARIE’s registers 
and main memory have a 
unique address along the 
datapath.

• The addresses take the 
form of signals issued by 
the control unit.

How many signal lines does MARIE’s control unit need? 
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• Let us define two sets of three 
signals.

• One set, P2, P1, P0, controls 
reading from memory or a 
register, and 

• The other set consisting of P5, 
P4, P3, controls writing to 
memory or a register.

The next slide shows a close up view of MARIE’s MBR.

Control Signals
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Decoding: Example Circuit

This register is enabled for reading when P0 and P1 are high, and 
enabled for writing when P3 and P4 are high.
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Control Signals

• Careful inspection of 
MARIE’s RTL reveals that the 
ALU has only three 
operations: add, subtract, 
and clear.

• We will also define a fourth 
“do nothing” state.

• The entire set of MARIE’s 
control signals consists of:

• Register controls: P0 through 
P5, MR , and MW.

• ALU controls: A0 through A1 
and LALT to control the ALU’s 
data source. 

• Timing: T0 through T7 and 
counter reset Cr 
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• Consider MARIE’s Add instruction. Its RTL is:
MAR  X

MBR  M[MAR]

AC  AC + MBR

• After an Add instruction is fetched, the address, X, is in 
the rightmost 12 bits of the IR, which has a datapath 
address of 7.

• X is copied to the MAR, which has a datapath address 
of 1.

• Thus we need to raise signals P0, P1, and P2 to read 
from the IR, and signal P3 to write to the MAR.

Control Signaling: Example
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• Here is the complete signal sequence for MARIE’s Add 
instruction:

   P3 P2 P1 P0 T3  : MAR  X

  P4 P3 T4 MR      : MBR  M[MAR]

  Cr A0 P5 T5 LALT : AC  AC + MBR

       [Reset counter]

• These signals are ANDed with combinational logic to 
bring about the desired machine behavior.

• The next slide shows the timing diagram for this 
instruction.

Control Signaling: Example
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P3 P2 P1 P0 T3  : MAR  X

P4 P3 T4 MR      : MBR  M[MAR]

Cr A0 P5 T5 LALT : AC  AC + MBR

       [Reset counter]

Timing: Example

• Notice the concurrent signal states 
during each machine cycle: C0 
through C3.
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• The signal pattern just described is the same whether 
our machine used hardwired or microprogrammed 
control.

• In hardwired control, the bit pattern of machine 
instruction in the IR is decoded by combinational logic.

• The decoder output works with the control signals of 
the current system state to produce a new set of 
control signals.

A block diagram of a hardwired control unit is shown on the 
following slide.

Implementing Decoder and Control 
Signals: Hardwired
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MARIE Decoding: Hardwired
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• MARIE's instruction decoder. (Partial.)

MARIE’s Instruction Decoder
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• A ring counter that counts from 0 to 5

Ring Counter
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• This is the hardwired logic for MARIE’s Add = 0011 
instruction.

MARIE’s ADD Instruction
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• In microprogrammed control, instruction 
microcode produces control signal changes.

• Machine instructions are the input for a 
microprogram that converts the 1s and 0s of an 
instruction into control signals.

• The microprogram is stored in firmware, which is 
also called the control store.

• A microcode instruction is retrieved during each 
clock cycle.

Implementing Decoder and Control 
Signals: Microprogrammed Control

52



• This is how a generic microprogrammed control 
unit might look.

Generic Microprogramming Control 
Unit
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• If MARIE were microprogrammed, the microinstruction 
format might look like this:

• MicroOp1 and MicroOp2 contain binary codes for 
each instruction. Jump is a single bit indicating that the 
value in the Dest field is a valid address and should be 
placed in the microsequencer.

Microprogrammed Control: Example
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• The table below contains MARIE’s microoperation 
codes along with the corresponding RTL:

MARIE’s Microoperation Codes
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• The first nine lines of MARIE’s microprogram are 
given below (using RTL for clarity):

MARIE’s Microprogram
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• The first four lines are the fetch-decode-execute 
cycle.

• The remaining lines are the beginning of a jump 
table.

MARIE’s Microprogram
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• It’s important to remember that a microprogrammed 
control unit works like a system-in-miniature.

• Microinstructions are fetched, decoded, and executed 
in the same manner as regular instructions.

• This extra level of instruction interpretation is what 
makes microprogrammed control slower than 
hardwired control.

• The advantages of microprogrammed control are that it 
can support very complicated instructions and only the 
microprogram needs to be changed if the instruction 
set changes (or an error is found).

Discussion: Microprogrammed 
Control
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Real-World Architectures

• MARIE shares many features with modern 
architectures but it is not an accurate depiction of 
them.

• We briefly examine two machine architectures.  

• We will look at an Intel architecture, which is a 
CISC machine and MIPS, which is a RISC machine.

• CISC is an acronym for complex instruction set 
computer.

• RISC stands for reduced instruction set computer.

We delve into the “RISC versus CISC” argument later if time permits.
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Intel Architecture (1)

• The classic Intel architecture, the 8086, was born 
in 1979. It is a CISC architecture.

• It was adopted by IBM for its famed PC, which was 
released in 1981.  

• The 8086 operated on 16-bit data words and 
supported 20-bit memory addresses.

• Later, to lower costs, the 8-bit 8088 was 
introduced. Like the 8086, it used 20-bit memory 
addresses.

What was the largest memory that the 8086 could address?
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Intel Architecture (2)

• The 8086 had four 16-bit general-purpose registers 
that could be accessed by the half-word.

• It also had a flags register, an instruction register, 
and a stack accessed through the values in two 
other registers, the base pointer and the stack 
pointer.  

• The 8086 had no built in floating-point processing.

• In 1980, Intel released the 8087 numeric 
coprocessor, but few users elected to install them 
because of their high cost.
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Intel Architecture (3)

• In 1985, Intel introduced the 32-bit 80386.

• It also had no built-in floating-point unit.

• The 80486, introduced in 1989, was an 80386 that 
had built-in floating-point processing and cache 
memory.

• The 80386 and 80486 offered downward 
compatibility with the 8086 and 8088.

• Software written for the smaller-word systems was 
directed to use the lower 16 bits of the 32-bit 
registers.
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Intel Architecture (4)

• Intel’s Pentium 4 introduced a brand new NetBurst 
architecture.

• Speed enhancing features include:
• Hyperthreading

• Hyperpipelining

• Wider instruction pipeline

• Execution trace cache (holds decoded instructions for 
possible reuse) multilevel cache and instruction pipelining.

• Intel, along with many others, is marrying many of the 
ideas of RISC architectures with microprocessors that 
are largely CISC.
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MIPS Architecture (1)

• The MIPS family of CPUs has been one of the most 
successful in its class.

• In 1986 the first MIPS CPU was announced.

• It had a 32-bit word size and could address 4GB of 
memory.

• Over the years, MIPS processors have been used in 
general purpose computers as well as in games.

• The MIPS architecture now offers 32- and 64-bit 
versions.
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MIPS Architecture (2)

• MIPS was one of the first RISC microprocessors.

• The original MIPS architecture had only 55 different 
instructions, as compared with the 8086 which had 
over 100.

• MIPS was designed with performance in mind: It is 
a load/store architecture, meaning that only the 
load and store instructions can access memory.

• The large number of registers in the MIPS 
architecture keeps bus traffic to a minimum. 

How does this design affect performance?
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Summary

• Control units can be microprogrammed or hardwired.
• Hardwired control units give better performance, while 

microprogrammed units are more adaptable to changes.

• Computers run programs through iterative fetch-
decode-execute cycles.

• Computers can run programs that are in machine 
language.

• An assembler converts mnemonic code to machine 
language.

• The Intel architecture is an example of a CISC 
architecture; MIPS is an example of a RISC architecture.
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