
Introduction to Simple
Computer Part II

Hui Chen

Computer & Information Science

CUNY Brooklyn College

Fall 2023

1

Objectives

• Learn the components common to every modern
computer system.

• Be able to explain how each component
contributes to program execution.

• Understand a simple architecture invented to
illuminate these basic concepts, and how it relates
to some real architectures.

• Know how the program assembly process works.

2

Introducing MARIE

• Bring together the ideas discussed to this point
using a very simple model computer.

• MARIE Machine Architecture (Really Intuitive and
Easy, or MARIE)

• designed for the singular purpose of illustrating basic
computer system concepts.

• This system is very simple with limited potential.

• Nonetheless, a deep understanding of its functions
will enable you to comprehend system
architectures that are much more complex.

3

Characteristics

• The MARIE architecture has the following
characteristics:

• Binary, two's complement data representation.

• Stored program, fixed word length data and instructions.

• 4K words of word-addressable main memory.

• 16-bit data words.

• 16-bit instructions, 4 for the opcode and 12 for the
address.

• A 16-bit arithmetic logic unit (ALU).

• Seven registers for control and data movement.

4

MARIE’s Registers: (1) – (3)

• MARIE’s seven registers are:
• (1) Accumulator, AC, a 16-bit register that holds a

conditional operator (e.g., "less than") or one operand
of a two-operand instruction.

• (2) Memory address register, MAR, a 12-bit register that
holds the memory address of an instruction or the
operand of an instruction.

• (3) Memory buffer register, MBR, a 16-bit register that
holds the data after its retrieval from, or before its
placement in memory.

5

MARIE’s Registers: (4) – (7)

• (4) Program counter, PC, a 12-bit register that holds the
address of the next program instruction to be executed.

• (5) Instruction register, IR, which holds an instruction
immediately preceding its execution.

• (6) Input register, InREG, an 8-bit register that holds data
read from an input device.

• (7) Output register, OutREG, an 8-bit register, that holds
data that is ready for the output device.

6

MARIE Architecture

• This is the MARIE architecture shown graphically.

7

MARIE Architecture

• The registers are interconnected, and connected with
main memory through a common data bus.

• Each device on the bus is identified by a unique number
• that is set on the control lines whenever that device is

required to carry out an operation.

• Separate connections are also provided
• between the accumulator and the memory buffer register,

and

• the ALU and the accumulator and memory buffer register.

• This permits data transfer between these devices
without use of the main data bus.

8

MARIE’s 16-bit BUS

• This is the MARIE data
path show graphically.

9

Instruction Set

• A computer’s instruction set architecture (ISA)
specifies

• the format of its instructions, and

• the primitive operations that the machine can perform.

• The ISA is an interface between a computer’s
hardware and its software.

• Some ISAs include hundreds of different
instructions for processing data and controlling
program execution.

• The MARIE ISA consists of only 13 instructions.

10

Format of MARIE Instruction

• This is the format of a MARIE instruction:

• The fundamental MARIE instructions are:

11

Instruction Example: LOAD

• This is a bit pattern for a LOAD instruction as it
would appear in the IR:

• We see that
• the opcode is 1, and

• the address from which to load the data is 3.

12

• This is a bit pattern for a SKIPCOND instruction as it would
appear in the IR:

• We see that
– the opcode is 8, and
– bits 11 and 10 are 10, meaning that the next instruction will be

skipped if the value in the AC is greater than zero.

Instruction Example: SKIPCOND

13

Microoperations and RTL

• Each of our instructions actually consists of a
sequence of smaller instructions called
microoperations.

• The exact sequence of microoperations that are
carried out by an instruction can be specified using
register transfer language (RTL).

• In the MARIE RTL, we use the notation M[X] to
indicate the actual data value stored in memory
location X, and  to indicate the transfer of bytes
to a register or memory location.

14

RTL: Example

• The RTL for the LOAD instruction is:

• Similarly, the RTL for the ADD instruction is:

MAR  X

MBR  M[MAR]

AC  AC + MBR

MAR  X

MBR  M[MAR]

AC  MBR

15

More about SKIPCOND using RTL

• Recall that SKIPCOND skips the next instruction
according to the value of the AC.

• The RTL for the this instruction is the most
complex in our instruction set:

If IR[11 - 10] = 00 then

 If AC < 0 then PC  PC + 1

else If IR[11 - 10] = 01 then

 If AC = 0 then PC  PC + 1

else If IR[11 - 10] = 11 then

 If AC > 0 then PC  PC + 1

16

Instruction Processing

• The fetch-decode-execute cycle is the series of steps
that a computer carries out when it runs a program.

• We first have to fetch an instruction from memory, and
place it into the IR.

• Once in the IR, it is decoded to determine what needs
to be done next.

• If a memory value (operand) is involved in the
operation, it is retrieved and placed into the MBR.

• With everything in place, the instruction is executed.

The next slide shows a flowchart of this process.

17

Instruction Processing: Float Chart

18

Instruction Processing: Interrupts

• All computers provide a way of interrupting the
fetch-decode-execute cycle.

• Interrupts are asynchronous and indicate some
type of service is required.

• Interrupts occur when:
• A user break (e.g., Control+C) is issued

• I/O is requested by the user or a program

• A critical error occurs

• Interrupts can be caused by hardware or software.
• Software interrupts are also called traps.

19

Modifying Instruction Processing
for Interrupts
• Interrupt processing involves adding another step

to the fetch-decode-execute cycle as shown below.

The next slide shows a flowchart of “Process the interrupt.”

20

Interrupt Processing

21

More about Interrupts Processing

• For general-purpose systems, it is common to
disable all interrupts during the time in which an
interrupt is being processed.

• Typically, this is achieved by setting a bit in the flags
register.

• Interrupts that are ignored in this case are called
maskable.

• Nonmaskable interrupts are those interrupts that
must be processed in order to keep the system in a
stable condition.

22

Interrupts and I/O

• Interrupts are very useful in processing I/O.

• However, interrupt-driven I/O is complicated, and
is beyond the scope of our present discussion.

• We will look into this idea in greater detail later.

• MARIE, being the simplest of simple systems,
uses a modified form of programmed I/O.

• All output is placed in an output register (OutREG) and
the CPU polls the input register (InREG) until input is
sensed, at which time the value is copied into the
accumulator.

23

A Simple Program on MARIE

• Consider the simple MARIE program given below.
We show a set of mnemonic instructions stored at
addresses 0x100 – 0x106 (hex):

24
All numbers are hexadecimals

Running the Simple Program: 1st
Instruction
• Let’s look at what happens inside the computer

when our program runs.

• This is the LOAD 104 instruction:

25

Running the Simple Program: 2nd
Instruction
• Our second instruction is ADD 105:

26

Introducing Assemblers

• Mnemonic instructions, such as LOAD 104, are
easy for humans to write and understand.

• They are impossible for computers to understand.

• Assemblers translate instructions that are
comprehensible to humans into the machine
language that is comprehensible to computers

• We note the distinction between an assembler and a
compiler

• In assembly language, there is a one-to-one
correspondence between a mnemonic instruction and
its machine code.

• With compilers, this is not usually the case.

27

Assembling Process

• Assemblers create an object program file from
mnemonic source code in two passes.

1. During the first pass, the assembler assembles as
much of the program as it can, while it builds a
symbol table that contains memory references for
all symbols in the program.

2. During the second pass, the instructions are
completed using the values from the symbol
table.

28

Example: Pass 1

• Consider our example
program at the right.

• Note that we have
included two
directives HEX and
DEC that specify the
radix of the constants.

• The first pass, creates
a symbol table and
the partially-
assembled
instructions as shown.

29

Example: Pass 2

• After the second pass, the assembly is complete.

30

Indirect Addressing

• So far, all of the MARIE instructions that we have
discussed use a direct addressing mode.

• This means that the address of the operand is
explicitly stated in the instruction.

• It is often useful to employ a indirect addressing,
where the address of the address of the operand is
given in the instruction.

• If you have ever used pointers in a program, you are
already familiar with indirect addressing.

31

Extending Our Instruction Set
with Indirect Addressing

• We have included three indirect addressing mode
instructions in the MARIE instruction set.

• LOADI X

• STOREI X

• ADDI X

• JNS X

• CLEAR

32

LOADI X

• In RTL :

33

STOREI X

• In RTL :

34

ADDI X

• The ADDI instruction is a combination of LOADI
X and ADD X:

• In RTL:

35

Subroutines

• Another helpful programming tool is the use of
subroutines.

• The jump-and-store instruction, JNS, gives us limited
subroutine functionality. The details of the JNS instruction
are given by the following RTL:

36

CLEAR

• All it does is set the contents of the accumulator to
all zeroes.

• This is the RTL for CLEAR:

AC  0

37

A Discussion on Decoding

• A computer’s control unit keeps things
synchronized, making sure that bits flow to the
correct components as the components are
needed.

• There are two general ways in which a control unit
can be implemented: hardwired control and
microprogrammed control.

• Hardwired controllers implement this program using
digital logic components.

• With microprogrammed control, a small program is
placed into read-only memory in the microcontroller.

38

Control Unit

• The microoperations given by each RTL define the
operation of MARIE’s control unit.

• Each microoperation consists of a distinctive signal
pattern that is interpreted by the control unit and
results in the execution of an instruction.

• Recall, the RTL for the Add instruction is:

MAR  X

MBR  M[MAR]

AC  AC + MBR

39

Decoding

• Each of MARIE’s registers
and main memory have a
unique address along the
datapath.

• The addresses take the
form of signals issued by
the control unit.

How many signal lines does MARIE’s control unit need?

40

• Let us define two sets of three
signals.

• One set, P2, P1, P0, controls
reading from memory or a
register, and

• The other set consisting of P5,
P4, P3, controls writing to
memory or a register.

The next slide shows a close up view of MARIE’s MBR.

Control Signals

41

Decoding: Example Circuit

This register is enabled for reading when P0 and P1 are high, and
enabled for writing when P3 and P4 are high.

42

Control Signals

• Careful inspection of
MARIE’s RTL reveals that the
ALU has only three
operations: add, subtract,
and clear.

• We will also define a fourth
“do nothing” state.

• The entire set of MARIE’s
control signals consists of:

• Register controls: P0 through
P5, MR , and MW.

• ALU controls: A0 through A1
and LALT to control the ALU’s
data source.

• Timing: T0 through T7 and
counter reset Cr

43

• Consider MARIE’s Add instruction. Its RTL is:
MAR  X

MBR  M[MAR]

AC  AC + MBR

• After an Add instruction is fetched, the address, X, is in
the rightmost 12 bits of the IR, which has a datapath
address of 7.

• X is copied to the MAR, which has a datapath address
of 1.

• Thus we need to raise signals P0, P1, and P2 to read
from the IR, and signal P3 to write to the MAR.

Control Signaling: Example

44

• Here is the complete signal sequence for MARIE’s Add
instruction:

 P3 P2 P1 P0 T3 : MAR  X

 P4 P3 T4 MR : MBR  M[MAR]

 Cr A0 P5 T5 LALT : AC  AC + MBR

 [Reset counter]

• These signals are ANDed with combinational logic to
bring about the desired machine behavior.

• The next slide shows the timing diagram for this
instruction.

Control Signaling: Example

45

P3 P2 P1 P0 T3 : MAR  X

P4 P3 T4 MR : MBR  M[MAR]

Cr A0 P5 T5 LALT : AC  AC + MBR

 [Reset counter]

Timing: Example

• Notice the concurrent signal states
during each machine cycle: C0
through C3.

46

• The signal pattern just described is the same whether
our machine used hardwired or microprogrammed
control.

• In hardwired control, the bit pattern of machine
instruction in the IR is decoded by combinational logic.

• The decoder output works with the control signals of
the current system state to produce a new set of
control signals.

A block diagram of a hardwired control unit is shown on the
following slide.

Implementing Decoder and Control
Signals: Hardwired

47

MARIE Decoding: Hardwired

48

• MARIE's instruction decoder. (Partial.)

MARIE’s Instruction Decoder

49

• A ring counter that counts from 0 to 5

Ring Counter

50

• This is the hardwired logic for MARIE’s Add = 0011
instruction.

MARIE’s ADD Instruction

51

• In microprogrammed control, instruction
microcode produces control signal changes.

• Machine instructions are the input for a
microprogram that converts the 1s and 0s of an
instruction into control signals.

• The microprogram is stored in firmware, which is
also called the control store.

• A microcode instruction is retrieved during each
clock cycle.

Implementing Decoder and Control
Signals: Microprogrammed Control

52

• This is how a generic microprogrammed control
unit might look.

Generic Microprogramming Control
Unit

53

• If MARIE were microprogrammed, the microinstruction
format might look like this:

• MicroOp1 and MicroOp2 contain binary codes for
each instruction. Jump is a single bit indicating that the
value in the Dest field is a valid address and should be
placed in the microsequencer.

Microprogrammed Control: Example

54

• The table below contains MARIE’s microoperation
codes along with the corresponding RTL:

MARIE’s Microoperation Codes

55

• The first nine lines of MARIE’s microprogram are
given below (using RTL for clarity):

MARIE’s Microprogram

56

• The first four lines are the fetch-decode-execute
cycle.

• The remaining lines are the beginning of a jump
table.

MARIE’s Microprogram

57

• It’s important to remember that a microprogrammed
control unit works like a system-in-miniature.

• Microinstructions are fetched, decoded, and executed
in the same manner as regular instructions.

• This extra level of instruction interpretation is what
makes microprogrammed control slower than
hardwired control.

• The advantages of microprogrammed control are that it
can support very complicated instructions and only the
microprogram needs to be changed if the instruction
set changes (or an error is found).

Discussion: Microprogrammed
Control

58

Real-World Architectures

• MARIE shares many features with modern
architectures but it is not an accurate depiction of
them.

• We briefly examine two machine architectures.

• We will look at an Intel architecture, which is a
CISC machine and MIPS, which is a RISC machine.

• CISC is an acronym for complex instruction set
computer.

• RISC stands for reduced instruction set computer.

We delve into the “RISC versus CISC” argument later if time permits.

59

Intel Architecture (1)

• The classic Intel architecture, the 8086, was born
in 1979. It is a CISC architecture.

• It was adopted by IBM for its famed PC, which was
released in 1981.

• The 8086 operated on 16-bit data words and
supported 20-bit memory addresses.

• Later, to lower costs, the 8-bit 8088 was
introduced. Like the 8086, it used 20-bit memory
addresses.

What was the largest memory that the 8086 could address?

60

Intel Architecture (2)

• The 8086 had four 16-bit general-purpose registers
that could be accessed by the half-word.

• It also had a flags register, an instruction register,
and a stack accessed through the values in two
other registers, the base pointer and the stack
pointer.

• The 8086 had no built in floating-point processing.

• In 1980, Intel released the 8087 numeric
coprocessor, but few users elected to install them
because of their high cost.

61

Intel Architecture (3)

• In 1985, Intel introduced the 32-bit 80386.

• It also had no built-in floating-point unit.

• The 80486, introduced in 1989, was an 80386 that
had built-in floating-point processing and cache
memory.

• The 80386 and 80486 offered downward
compatibility with the 8086 and 8088.

• Software written for the smaller-word systems was
directed to use the lower 16 bits of the 32-bit
registers.

62

Intel Architecture (4)

• Intel’s Pentium 4 introduced a brand new NetBurst
architecture.

• Speed enhancing features include:
• Hyperthreading

• Hyperpipelining

• Wider instruction pipeline

• Execution trace cache (holds decoded instructions for
possible reuse) multilevel cache and instruction pipelining.

• Intel, along with many others, is marrying many of the
ideas of RISC architectures with microprocessors that
are largely CISC.

63

MIPS Architecture (1)

• The MIPS family of CPUs has been one of the most
successful in its class.

• In 1986 the first MIPS CPU was announced.

• It had a 32-bit word size and could address 4GB of
memory.

• Over the years, MIPS processors have been used in
general purpose computers as well as in games.

• The MIPS architecture now offers 32- and 64-bit
versions.

64

MIPS Architecture (2)

• MIPS was one of the first RISC microprocessors.

• The original MIPS architecture had only 55 different
instructions, as compared with the 8086 which had
over 100.

• MIPS was designed with performance in mind: It is
a load/store architecture, meaning that only the
load and store instructions can access memory.

• The large number of registers in the MIPS
architecture keeps bus traffic to a minimum.

How does this design affect performance?

65

Summary

• Control units can be microprogrammed or hardwired.
• Hardwired control units give better performance, while

microprogrammed units are more adaptable to changes.

• Computers run programs through iterative fetch-
decode-execute cycles.

• Computers can run programs that are in machine
language.

• An assembler converts mnemonic code to machine
language.

• The Intel architecture is an example of a CISC
architecture; MIPS is an example of a RISC architecture.

66

	Slide 1: Introduction to Simple Computer Part II
	Slide 2: Objectives
	Slide 3: Introducing MARIE
	Slide 4: Characteristics
	Slide 5: MARIE’s Registers: (1) – (3)
	Slide 6: MARIE’s Registers: (4) – (7)
	Slide 7: MARIE Architecture
	Slide 8: MARIE Architecture
	Slide 9: MARIE’s 16-bit BUS
	Slide 10: Instruction Set
	Slide 11: Format of MARIE Instruction
	Slide 12: Instruction Example: LOAD
	Slide 13: Instruction Example: SKIPCOND
	Slide 14: Microoperations and RTL
	Slide 15: RTL: Example
	Slide 16: More about SKIPCOND using RTL
	Slide 17: Instruction Processing
	Slide 18: Instruction Processing: Float Chart
	Slide 19: Instruction Processing: Interrupts
	Slide 20: Modifying Instruction Processing for Interrupts
	Slide 21: Interrupt Processing
	Slide 22: More about Interrupts Processing
	Slide 23: Interrupts and I/O
	Slide 24: A Simple Program on MARIE
	Slide 25: Running the Simple Program: 1st Instruction
	Slide 26: Running the Simple Program: 2nd Instruction
	Slide 27: Introducing Assemblers
	Slide 28: Assembling Process
	Slide 29: Example: Pass 1
	Slide 30: Example: Pass 2
	Slide 31: Indirect Addressing
	Slide 32: Extending Our Instruction Set with Indirect Addressing
	Slide 33: LOADI X
	Slide 34: STOREI X
	Slide 35: ADDI X
	Slide 36: Subroutines
	Slide 37: CLEAR
	Slide 38: A Discussion on Decoding
	Slide 39: Control Unit
	Slide 40: Decoding
	Slide 41: Control Signals
	Slide 42: Decoding: Example Circuit
	Slide 43: Control Signals
	Slide 44: Control Signaling: Example
	Slide 45: Control Signaling: Example
	Slide 46: Timing: Example
	Slide 47:
	Slide 48:
	Slide 49: MARIE’s Instruction Decoder
	Slide 50
	Slide 51: MARIE’s ADD Instruction
	Slide 52: Implementing Decoder and Control Signals: Microprogrammed Control
	Slide 53: Generic Microprogramming Control Unit
	Slide 54: Microprogrammed Control: Example
	Slide 55: MARIE’s Microoperation Codes
	Slide 56: MARIE’s Microprogram
	Slide 57
	Slide 58: Discussion: Microprogrammed Control
	Slide 59: Real-World Architectures
	Slide 60: Intel Architecture (1)
	Slide 61: Intel Architecture (2)
	Slide 62: Intel Architecture (3)
	Slide 63: Intel Architecture (4)
	Slide 64: MIPS Architecture (1)
	Slide 65: MIPS Architecture (2)
	Slide 66: Summary

