Introduction to Simple Computer Part I

Hui Chen
Computer & Information Science
CUNY Brooklyn College
Fall 2023

Objectives

- Learn the components common to every modern computer system.
- Be able to explain how each component contributes to program execution.
- Understand a simple architecture invented to illuminate these basic concepts, and how it relates to some real architectures.
- Know how the program assembly process works.

CPU

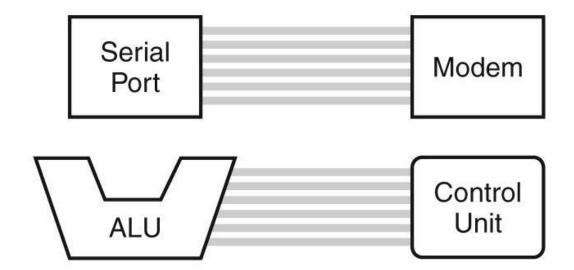
- Fetches, decodes, and executes program instructions.
- Principal parts: the datapath and the control unit.
 - The datapath consists of
 - an arithmetic-logic unit, and
 - storage units (registers)
 - that are interconnected by a data bus that is also connected to main memory.
 - Various CPU components perform sequenced operations according to signals provided by its control unit.

CPU Storage Units: Registers

- Registers hold data that can be readily accessed by the CPU.
- They can be implemented using D flip-flops.
 - A 32-bit register requires 32 D flip-flops.

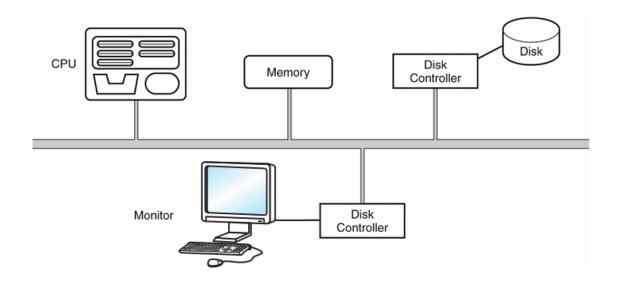
ALU

 The arithmetic-logic unit (ALU) carries out logical and arithmetic operations as directed by the control unit.


Control Unit and Registers

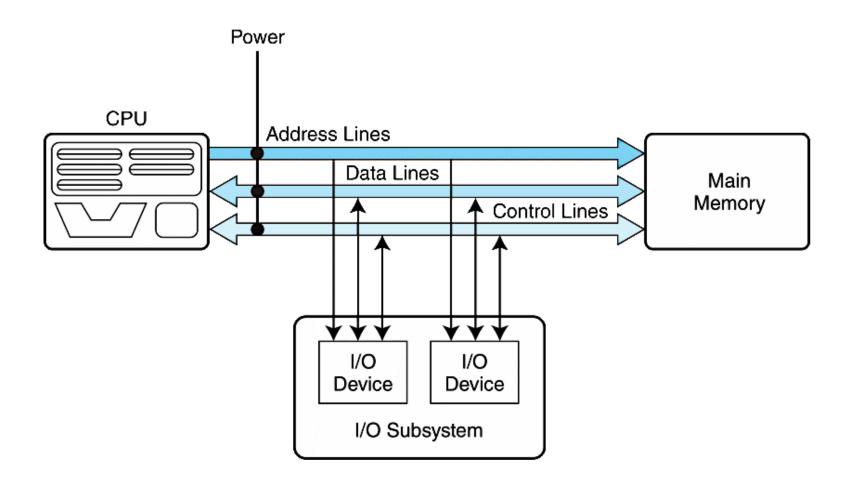
 The control unit determines which actions to carry out according to the values in a program counter register and a status register.

The Bus


- The CPU shares data with other system components by way of a data bus.
 - A bus is a set of wires that simultaneously convey a single bit along each line.
- Two types of buses are commonly found in computer systems:
 - point-to-point, and
 - multipoint buses.

Point-to-Point Bus

Multipoint Bus


 Because a multipoint bus is a shared resource, access to it is controlled through protocols, which are built into the hardware.

BUS Lines

- Buses consist of data lines, control lines, and address lines.
 - Data lines convey bits from one device to another,
 - Control lines determine the direction of data flow, and when each device can access the bus.
 - Address lines determine the location of the source or destination of the data.

Example Bus Configuration

Bus Configuration

- Master-slave configuration
 - more than one device can be the bus master, concurrent bus master requests must be arbitrated.
- Four categories of bus arbitration are:
 - Daisy chain: Permissions are passed from the highest-priority device to the lowest.
 - Centralized parallel: Each device is directly connected to an arbitration circuit.
 - Distributed using self-detection: Devices decide which gets the bus among themselves.
 - Distributed using collision-detection: Any device can try to use the bus. If its data collides with the data of another device, it tries again.

Clocks

- Every computer contains at least one clock that synchronizes the activities of its components.
- A fixed number of clock cycles are required to carry out each data movement or computational operation.
- The clock frequency, measured in megahertz or gigahertz, determines the speed with which all operations are carried out.
- Clock cycle time is the reciprocal of clock frequency.
 - An 800 MHz clock has a cycle time of 1.25 ns.

Clock Speed vs. Clock Performance

- Clock speed should not be confused with CPU performance.
- The CPU time required to run a program is given by the general performance equation:

$$\texttt{CPU Time} = \frac{\texttt{seconds}}{\texttt{program}} = \frac{\texttt{instructions}}{\texttt{program}} \times \frac{\texttt{avg. cycles}}{\texttt{instruction}} \times \frac{\texttt{seconds}}{\texttt{cycle}}$$

 We see that we can improve CPU throughput when we reduce the number of instructions in a program, reduce the number of cycles per instruction, or reduce the number of nanoseconds per clock cycle.

We will return to this important equation later.

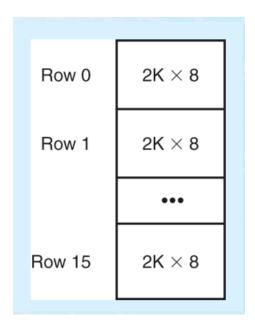
Input/Output Subsystem

- A computer communicates with the outside world through its input/output (I/O) subsystem.
- I/O devices connect to the CPU through various interfaces.
- I/O can be memory-mapped
 - where the I/O device behaves like main memory from the CPU's point of view.
- Or I/O can be instruction-based, where the CPU has a specialized I/O instruction set.

Memory

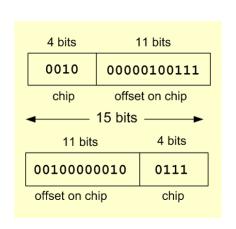
- Computer memory consists of a linear array of addressable storage cells that are similar to registers.
- Memory can be byte-addressable, or wordaddressable, where a word typically consists of two or more bytes.
- Memory is constructed of RAM chips, often referred to in terms of length × width.
- If the memory word size of the machine is 16 bits, then a $4M \times 16$ RAM chip gives us 4 megabytes of 16-bit memory locations.

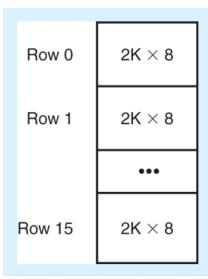
Memory Addressing

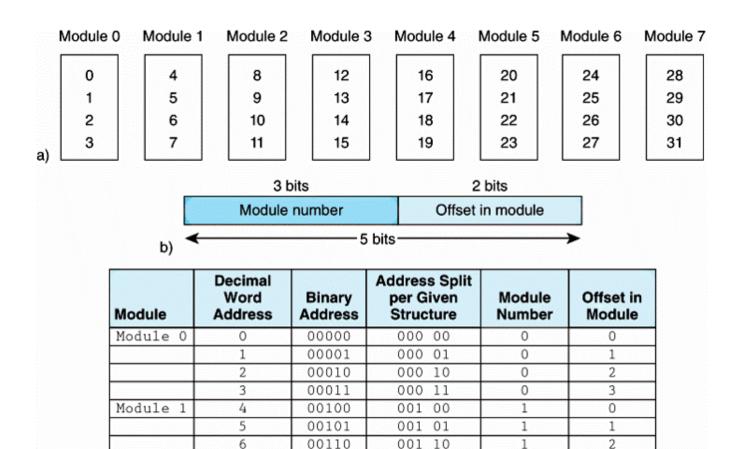

- How does the computer access a memory location corresponds to a particular address?
- We observe that 4M can be expressed as $2^2 \times 2^{20} = 2^{22}$ words.
- The memory locations for this memory are numbered 0 through $2^{22} 1$.
- Thus, the memory bus of this system requires at least 22 address lines.
 - The address lines "count" from 0 to $2^{22} 1$ in binary. Each line is either "on" or "off" indicating the location of the desired memory element.

Memory Organization

- Physical memory usually consists of more than one RAM chip.
- Access is more efficient when memory is organized into banks of chips with the addresses interleaved across the chips
- With low-order interleaving, the low order bits of the address specify which memory bank contains the address of interest.
- Accordingly, in high-order interleaving, the high order address bits specify the memory bank.


Example Setup.


- Suppose we have a memory consisting of 16 2K x 8 bit chips.
- Memory is $32K = 2^5 \times 2^{10} = 2^{15}$
- 15 bits are needed for each address.
- We need 4 bits to select the chip, and 11 bits for the offset into the chip that selects the byte.


Example:

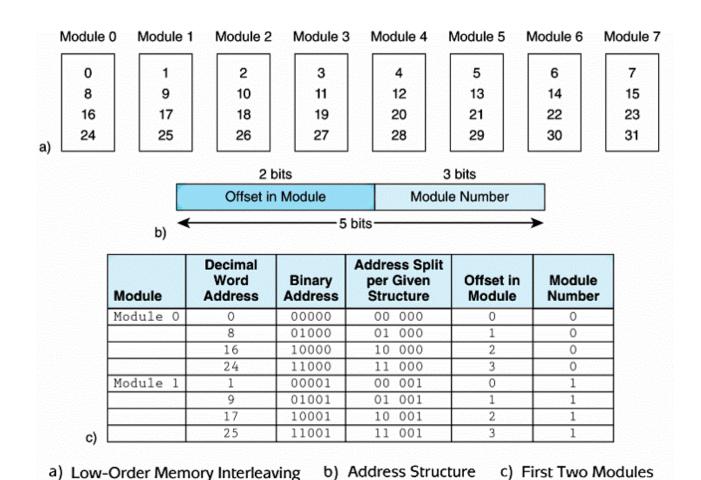
- In high-order interleaving the high-order 4 bits select the chip.
- In low-order interleaving the low-order 4 bits select the chip.

Addressing Modules

00111

c)

001 11


3

a) High-Order Memory Interleaving

b) Address Structure

c) First Two Modules

Addressing Modules

Example

- Suppose we have a 128-word memory that is 8-way low-order interleaved
 - which means it uses 8 memory banks; 8 = 2³
- So we use the low-order 3 bits to identify the bank.
- Because we have 128 words, we need 7 bits for each address ($128 = 2^7$).

Interrupts

- The normal execution of a program is altered when an event of higher-priority occurs. The CPU is alerted to such an event through an interrupt.
- Interrupts can be triggered by I/O requests, arithmetic errors (such as division by zero), or when an invalid instruction is encountered.
- Each interrupt is associated with a procedure that directs the actions of the CPU when an interrupt occurs.
 - Nonmaskable interrupts are high-priority interrupts that cannot be ignored.

Summary

- The major components of a computer system are its control unit, registers, memory, ALU, and data path.
- A built-in clock keeps everything synchronized.

Questions?

- CPU
- Bus
- Clock
- I/O System
- Memory