
Design Characteristics and Metrics: Part I

Hui Chen a

aCUNY Brooklyn College, Brooklyn, NY, USA

May 6, 2025

H. Chen (CUNY-BC) Metrics May 6, 2025 1 / 45



Outline

1 SOLID and SOFA

2 SOFA Methods

3 SOLID Classes
Single Responsibility Principle
Open-Closed Principle
Liskov Substitution Principle
Interface Separation Principle
Demeter Principle

4 References

H. Chen (CUNY-BC) Metrics May 6, 2025 2 / 45



SOLID and SOFA

Outline

1 SOLID and SOFA

2 SOFA Methods

3 SOLID Classes
Single Responsibility Principle
Open-Closed Principle
Liskov Substitution Principle
Interface Separation Principle
Demeter Principle

4 References

H. Chen (CUNY-BC) Metrics May 6, 2025 3 / 45



SOLID and SOFA

SOLID and SOFA Design

Motivation: in order to minimize cost of change, we want classes to be
SOLID and methods to be SOFA.

H. Chen (CUNY-BC) Metrics May 6, 2025 4 / 45



SOFA Methods

Outline

1 SOLID and SOFA

2 SOFA Methods

3 SOLID Classes
Single Responsibility Principle
Open-Closed Principle
Liskov Substitution Principle
Interface Separation Principle
Demeter Principle

4 References

H. Chen (CUNY-BC) Metrics May 6, 2025 5 / 45



SOFA Methods

SOFA Methods

Motivation: in order to minimize cost of change, we want to design
methods to be SOFA, i.e.,
▶ the methods are Short,
▶ do One thing,
▶ have Few arguments, and
▶ have single level of Abstraction

H. Chen (CUNY-BC) Metrics May 6, 2025 6 / 45



SOFA Methods

Single Level of Abstraction (SLAP)

Code within a method should be at the same level of abstraction, i.e, parts
of the method should be on the level of “details”.

To understand this, let’s take a look at two examples.

H. Chen (CUNY-BC) Metrics May 6, 2025 7 / 45



SOFA Methods

Counter Example 1

1 void dispGpa () {
2 // read to this . gradeList
3 readCourseData ();
4 int totalPoints = 0;
5 for ( Grade grade : gradeList ) {
6 if ( grade . getGrade (). equals ("A")) {
7 totalPoints += 4 * grade . getCredits ();
8 } else {
9 // ... more ...

10 }
11 }
12 double gpa = // ... more ...
13 displayGpa (gpa);
14 }
15

Are all parts on the same level of abstraction?

H. Chen (CUNY-BC) Metrics May 6, 2025 8 / 45



SOFA Methods

Counter Example 1: Refactoring to be SOFA

1 void dispGpa () {
2 // read to this . gradeList
3 readCourseData ();
4 double gpa = computeGpa ();
5 displayGpa (gpa);
6 }
7
8 double computeGpa () {
9 // ...

10 }
11

H. Chen (CUNY-BC) Metrics May 6, 2025 9 / 45



SOFA Methods

Counter Example 2

The following example is due to Neal Ford1.

1Neal Ford. The productive programmer. " O’Reilly Media, Inc.", 2008.
H. Chen (CUNY-BC) Metrics May 6, 2025 10 / 45



SOFA Methods

Counter Example 2: Source Code

1 public void addOrder ( ShoppingCart cart , String userName , Order
order ) throws SQLException {

2 Connection c = null ; PreparedStatement ps = null ;
3 Statement s = null ; ResultSet rs = null ;
4 boolean transactionState = false ;
5 try {
6 c = dbPool . getConnection ();
7 s = c. createStatement ();
8 transactionState = c. getAutoCommit ();
9 int userKey = getUserKey (userName , c, ps , rs);

10 c. setAutoCommit ( false );
11 addSingleOrder (order , c, ps , userKey );
12 int orderKey = getOrderKey (s, rs);
13 addLineItems (cart , c, orderKey );
14 c. commit ();
15 order . setOrderKeyFrom ( orderKey );
16 } catch ( SQLException sqlx) {
17 s = c. createStatement (); c. rollback (); throw sqlx;
18 // to be continued

H. Chen (CUNY-BC) Metrics May 6, 2025 11 / 45



SOFA Methods

Counter Example 2: Source Code: Continued

19 } finally {
20 try {
21 c. setAutoCommit ( transactionState );
22 dbPool . release (c);
23 if (s != null ) s. close ();
24 if (ps != null ) ps. close ();
25 if (rs != null ) rs. close ();
26 } catch ( SQLException ignored ) { }
27 }
28 }

Are these on the same abstraction level?

H. Chen (CUNY-BC) Metrics May 6, 2025 12 / 45



SOFA Methods

Counter Example 2: Critique

The addOrder method contains the following parts:
▶ detailed steps to set up database infrastructure
▶ higher-level business domain methods like addSingleOrder
▶ ...

The code is hard read because it jumps between abstraction levels almost
randomly, based on what steps need to occur next.

H. Chen (CUNY-BC) Metrics May 6, 2025 13 / 45



SOFA Methods

Counter Example 2: Refactoring to be SOFA

Neal Ford refactored it into the following2:

2Neal Ford. The productive programmer. " O’Reilly Media, Inc.", 2008.
H. Chen (CUNY-BC) Metrics May 6, 2025 14 / 45



SOFA Methods

Counter Example 2: Refactoring to be SOFA

Neal Ford refactored it into the following3:

3Neal Ford. The productive programmer. " O’Reilly Media, Inc.", 2008.
H. Chen (CUNY-BC) Metrics May 6, 2025 15 / 45



SOFA Methods

Counter Example 2: Refactored Code: 1/4

1 public void addOrderFrom ( ShoppingCart cart , String userName ,
Order order ) throws SQLException {

2 Map db = setupDataInfrastructure ();
3 try {
4 int userKey = userKeyBasedOn (userName , db);
5 add(order , userKey , db);
6 addLineItemsFrom (cart ,
7 order . getOrderKey () , db);
8 completeTransaction (db);
9 } catch ( SQLException sqlx) {

10 rollbackTransactionFor (db);
11 throw sqlx;
12 } finally {
13 cleanUp (db);
14 }
15 }

H. Chen (CUNY-BC) Metrics May 6, 2025 16 / 45



SOFA Methods

Counter Example 2: Refactored Code: 2/4

1 private Map setupDataInfrastructure () throws SQLException {
2 HashMap db = new HashMap ();
3 Connection c = dbPool . getConnection ();
4 db.put(" connection ", c);
5 db.put(" transaction state ",
6 Boolean . valueOf ( setupTransactionStateFor (c)));
7 return db;
8 }

H. Chen (CUNY-BC) Metrics May 6, 2025 17 / 45



SOFA Methods

Counter Example 2: Refactored Code: 3/4

1 private void cleanUp (Map db) throws SQLException {
2 Connection connection = ( Connection ) db.get(" connection ");

3 boolean transactionState = (( Boolean )
4 db.get(" transation state ")). booleanValue ();
5 Statement s = ( Statement ) db.get(" statement ");
6 PreparedStatement ps = ( PreparedStatement )
7 db.get(" prepared statement ");
8 ResultSet rs = ( ResultSet ) db.get(" result set");
9 connection . setAutoCommit ( transactionState );

10 dbPool . release ( connection );
11 if (s != null ) s. close ();
12 if (ps != null ) ps. close ();
13 if (rs != null ) rs. close ();
14 }

H. Chen (CUNY-BC) Metrics May 6, 2025 18 / 45



SOFA Methods

Counter Example 2: Refactored Code: 4/4

1 private void rollbackTransactionFor (Map dbInfrastructure )
throws SQLException {

2 (( Connection ) dbInfrastructure .get(" connection ")).
rollback ();

3 }
4
5 private void completeTransaction (Map dbInfrastructure )

throws SQLException {
6 (( Connection ) dbInfrastructure .get(" connection ")). commit ()

;
7 }
8
9 private boolean setupTransactionStateFor ( Connection c)

throws SQLException {
10 boolean transactionState = c. getAutoCommit ();
11 c. setAutoCommit ( false );
12 return transactionState ;
13 }

H. Chen (CUNY-BC) Metrics May 6, 2025 19 / 45



SOLID Classes

Outline

1 SOLID and SOFA

2 SOFA Methods

3 SOLID Classes
Single Responsibility Principle
Open-Closed Principle
Liskov Substitution Principle
Interface Separation Principle
Demeter Principle

4 References

H. Chen (CUNY-BC) Metrics May 6, 2025 20 / 45



SOLID Classes

SOLID Design

Motivation: in order to minimize cost of change, we should to design
classes that are SOLID
▶ Single Responsibility principle
▶ Open/Closed principle
▶ Liskov substitution principle
▶ Interface Segregation Principle
▶ Demeter principle

(Note: some of which have some variations)

SOLID concerns itself with designing classes, assuming the methods are
already SOFA

H. Chen (CUNY-BC) Metrics May 6, 2025 21 / 45



SOLID Classes Single Responsibility Principle

Single Responsibility Principle

A class should have one and only one reason to change
▶ Each responsibility is a possible axis of change
▶ Changes to one axis shouldn’t affect others

What is class’s responsibility, in a sense or two?
▶ Part of the craft of OO design is defining responsibilities and then

sticking to them
Let’s consider examples:
▶ An instance of the User class is a movie-goer, and an authentication

principal, and a social network member, ... Bad!

H. Chen (CUNY-BC) Metrics May 6, 2025 22 / 45



SOLID Classes Single Responsibility Principle

Detecting Violations

We can examine some metrics to detect possible violations of the Single
Responsibility Principle
▶ Lines of Code

▶ Usually, really big class files are a tip-off – lines of Code is a coarse
metric to detect this

▶ Lack of Cohesion of Methods (LCOM) (to be discussed)

H. Chen (CUNY-BC) Metrics May 6, 2025 23 / 45



SOLID Classes Single Responsibility Principle

Discussion Question – which one is true?

Which one is true with regard to the Single Responsibility Principle
(SRP)?
▶ If a class respects SRP, its methods probably respect SOFA
▶ If a class’s methods respect SOFA, the class probably respects SRP

H. Chen (CUNY-BC) Metrics May 6, 2025 24 / 45



SOLID Classes Open-Closed Principle

The Open-Closed Principle

Classes should be open for extension, but closed for source modification.

H. Chen (CUNY-BC) Metrics May 6, 2025 25 / 45



SOLID Classes Open-Closed Principle

Discussion Question

Is the following class open for extension, but closed for source
modification?

1 class Report {
2 void outputReport ( String outputFormat ) {
3 switch ( outputFormat ) {
4 case "html":
5 HtmlFormatter . output ( this );
6 break ;
7 case "pdf":
8 PdfFormatter . output ( this );
9 }

10 }

H. Chen (CUNY-BC) Metrics May 6, 2025 26 / 45



SOLID Classes Open-Closed Principle

Discussion Question

Is the following class open for extension, but closed for source
modification?

1 class Report {
2 void outputReport ( String outputFormat ) {
3 switch ( outputFormat ) {
4 case "html":
5 HtmlFormatter . output ( this );
6 break ;
7 case "pdf":
8 PdfFormatter . output ( this );
9 }

10 }

Not the best, because can’t extend format (add new formatter types)
without changing Report class or know what its implementation details in
the outputReport method.

How to improve the design?

H. Chen (CUNY-BC) Metrics May 6, 2025 27 / 45



SOLID Classes Open-Closed Principle

Discussion Question

Using the Strategy design pattern, we redesign the class as follows,
1 class Report {
2 Report ( Formatter f) {
3 formatter = f;
4 }
5
6 void outputReport () {
7 formatter . output ( this );
8 }
9 }

10
11 interface Formatter {
12 void output ( Report report );
13 }
14
15 class PdfFormatter implements Formatter {...}
16 class HtmlFormatter implements Formatter {...}
17 class MsdocFormatter implements Formatter {...}

Any alternative way to redesign the class?

H. Chen (CUNY-BC) Metrics May 6, 2025 28 / 45



SOLID Classes Open-Closed Principle

Practical Considerations

▶ Can’t close against all types of changes, so have to choose (make a
design decision), and we might make a wrong decision

▶ Agile methodology can help expose important types of changes early
▶ Scenario-driven design with prioritized features
▶ Short iterations
▶ Test-first development

Then we can try to apply the principle for those types of changes we
identify in each iteration

H. Chen (CUNY-BC) Metrics May 6, 2025 29 / 45



SOLID Classes Liskov Substitution Principle

Liskov Substitution Principle

Attributed to Barbara Liskov

“A method that works on an instance of type T, should also work on any
subtype of T”

Note that in dynamically typed languages often type/subtype !=
class/subclass

H. Chen (CUNY-BC) Metrics May 6, 2025 30 / 45



SOLID Classes Liskov Substitution Principle

Discussion Question – does this follow the principle?

Source of the example: http://javacodegeeks.com/)
1 class Bird {
2 public void fly () {}
3 public void eat () {}
4 }
5 class Crow extends Bird {}
6 class Ostrich extends Bird{
7 fly (){ throw new UnsupportedOperationException (); }
8 }
9 public BirdTest {

10 public static void main( String [] args){
11 List <Bird > birdList = new ArrayList <Bird >();
12 birdList .add(new Bird ());
13 birdList .add(new Crow ());
14 birdList .add(new Ostrich ());
15 letTheBirdsFly ( birdList );
16 }
17 static void letTheBirdsFly ( List <Bird > birdList ){
18 for ( Bird b : birdList ) { b.fly (); }
19 }
20 }

H. Chen (CUNY-BC) Metrics May 6, 2025 31 / 45

http://javacodegeeks.com/


SOLID Classes Liskov Substitution Principle

Discussion Question – does this follow the principle?

How do we redesign it? Let’s consider additional design principles and
patterns ...
▶ Dependency Inversion Principle (Interface Separation Principle)

Additionally, we may also consider (a brief info, detailed exploration on
your own)
▶ Adapter Design Pattern
▶ Facade Design Pattern
▶ ...

H. Chen (CUNY-BC) Metrics May 6, 2025 32 / 45



SOLID Classes Liskov Substitution Principle

Dependency Inversion Principle

Problem: A depends on B, but B’s interface & implementation can
change, even if functionality is stable

Solution: insert an abstract interface that A & B depend on
▶ An example of the Interface Separation, Observer, Adapter, or

sometimes Facade design pattern
▶ Dependence Inversion: now B (and A) depend on interface, vs. A

depending on B – the dependencies are inverted

H. Chen (CUNY-BC) Metrics May 6, 2025 33 / 45



SOLID Classes Liskov Substitution Principle

Adapter Design Pattern

Problem: client wants to use a “service”
▶ The service generally supports desired operations,
▶ but the API’s don’t match what client expects
▶ and/or client must interoperate transparently with multiple

slightly-different services
Explore this on your own.

H. Chen (CUNY-BC) Metrics May 6, 2025 34 / 45



SOLID Classes Liskov Substitution Principle

Facade Design Pattern

If the hidden/dependent functionality is more than just one class, e.g.,
▶ for the mail list application: initialization, list management, start/stop

campaign ...

Then the adapted becomes a facade unifies distinct underlying API’s into
a single, simplified API

Explore this on your own.

H. Chen (CUNY-BC) Metrics May 6, 2025 35 / 45



SOLID Classes Interface Separation Principle

Interface Separation Principle

Clients should not be forced to depend on interfaces they do not need.

Discussed before

H. Chen (CUNY-BC) Metrics May 6, 2025 36 / 45



SOLID Classes Interface Separation Principle

Discussion Question – How do we redesign this?

Source of the example: http://javacodegeeks.com/)
1 class Bird {
2 public void fly () {}
3 public void eat () {}
4 }
5 class Crow extends Bird {}
6 class Ostrich extends Bird{
7 fly (){ throw new UnsupportedOperationException (); }
8 }
9 public BirdTest {

10 public static void main( String [] args){
11 List <Bird > birdList = new ArrayList <Bird >();
12 birdList .add(new Bird ());
13 birdList .add(new Crow ());
14 birdList .add(new Ostrich ());
15 letTheBirdsFly ( birdList );
16 }
17 static void letTheBirdsFly ( List <Bird > birdList ){
18 for ( Bird b : birdList ) { b.fly (); }
19 }
20 }

H. Chen (CUNY-BC) Metrics May 6, 2025 37 / 45

http://javacodegeeks.com/


SOLID Classes Demeter Principle

The Demeter Principle

A class should only know about the methods of other classes, not their
internals

H. Chen (CUNY-BC) Metrics May 6, 2025 38 / 45



SOLID Classes Demeter Principle

The Demeter Principle

What should we consider for this principle?
▶ e.g., avoid getter methods
▶ In practice: only talk to our friends ... not strangers, which means,

▶ We can call methods on ourselves, use our own instance variables and
parameters passed to the method

▶ But not on the results returned by them

H. Chen (CUNY-BC) Metrics May 6, 2025 39 / 45



SOLID Classes Demeter Principle

Discussion Question

Does this violate Demeter?
1 Options options = context . getOptions ();
2 File scratchDir = opts. getScratchDir ();
3 final string outputDir = scratchDir . getAbsolutePath ();

or equivalently,
1 final string outputDir = context . getOptions ()
2 . getScratchDir ()
3 . getAbsolutePath ();

H. Chen (CUNY-BC) Metrics May 6, 2025 40 / 45



SOLID Classes Demeter Principle

Discussion Question

Does this violate Demeter?
▶ Yes, if we consider Options and File as objects

1 Options options = context . getOptions ();
2 File scratchDir = opts. getScratchDir ();
3 final string outputDir = scratchDir . getAbsolutePath ();

or equivalently,
1 final string outputDir = context . getOptions ()
2 . getScratchDir ()
3 . getAbsolutePath ();

How do we fix this?

H. Chen (CUNY-BC) Metrics May 6, 2025 41 / 45



SOLID Classes Demeter Principle

Discussion Question

Examining what we really use the outputDir for, we revise the context
manager so that,

1 BufferedOutputWriter outputWriter = ctxt. getOutputWriter ()

H. Chen (CUNY-BC) Metrics May 6, 2025 42 / 45



SOLID Classes Demeter Principle

Summary and Questions

SOLID
▶ Single Responsibility principle
▶ Open/Closed principle
▶ Liskov substitution principle
▶ Interface Segregation Principle
▶ Demeter principle

Dependency Inversion Principle

H. Chen (CUNY-BC) Metrics May 6, 2025 43 / 45



References

Outline

1 SOLID and SOFA

2 SOFA Methods

3 SOLID Classes
Single Responsibility Principle
Open-Closed Principle
Liskov Substitution Principle
Interface Separation Principle
Demeter Principle

4 References

H. Chen (CUNY-BC) Metrics May 6, 2025 44 / 45



References

“Engineering Software as a Service” by Armando Fox and David Patterson
(2nd Edition)
“Introduction to Software Design with Java” by Martin P. Robillard
“Essentials of Software Engineering” by Frank Tsui, Orlando Karam, and
Barbara Bernal(4th Edition)

H. Chen (CUNY-BC) Metrics May 6, 2025 45 / 45

https://link.springer.com/book/10.1007/978-3-030-24094-3

	SOLID and SOFA
	SOFA Methods
	SOLID Classes
	Single Responsibility Principle
	Open-Closed Principle
	Liskov Substitution Principle
	Interface Separation Principle
	Demeter Principle

	References

