
Polymorphism and Object-Oriented Design

Hui Chen a

aCUNY Brooklyn College, Brooklyn, NY, USA

April 22, 2025

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 1 / 26

Outline

1 Background

2 Object-Oriented Design

3 Encapsulation

4 Design with Polymorphism
Review: Polymorphism and Java Interface
Interface Segregation Principle

5 References

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 2 / 26

Background

Outline

1 Background

2 Object-Oriented Design

3 Encapsulation

4 Design with Polymorphism
Review: Polymorphism and Java Interface
Interface Segregation Principle

5 References

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 3 / 26

Background

Software Design

▶ Design starts mostly from/with requirements – evolving mostly from
functionalities and other non-functional characteristics
▶ In the waterfall model Design generally occurs after Requirements
▶ In agile, design is performed during in each iteration

▶ To answer: How is the software solution going to be structured?
▶ What are the main components – (functional composition) often

directly from requirements’ functionalities (e.g., use cases, user stories,
scenarios)

▶ How are these components related? – Possibly re-organize the
components (composition/decomposition)

▶ Two main levels of design:
▶ Architectural (high level) design
▶ Detailed design
▶ Different design concerns at different abstraction levels (e.g. classes vs.

modules vs. entire system)
▶ How should we depict design – what notation/language?

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 4 / 26

Background

Review: High-level and Low-level Designs

Architectural design (high-level design) patterns and styles
▶ MVC, Layered, Pipeline, Client-Server, SOA, . . .

Detailed design (low-level design)
▶ Functional decomposition, database design, Object-Oriented design,

user-interface design, . . .

▶ Object-Oriented Design and UML – focused on modeling
▶ To discuss more about Object-Oriented design

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 5 / 26

Object-Oriented Design

Outline

1 Background

2 Object-Oriented Design

3 Encapsulation

4 Design with Polymorphism
Review: Polymorphism and Java Interface
Interface Segregation Principle

5 References

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 6 / 26

Object-Oriented Design

Object-Oriented Design

▶ Design principles, mechanisms, and techniques
▶ Encapsulation, information hiding, abstraction, immutability, interface,

. . .

▶ Design patterns
▶ Visitor, Observer, Strategy, . . .

In this lesson, we shall discuss several concepts about Object-Oriented
design principles, mechanisms, and techniques
▶ Encapsulation, interface, and polymorphism

Use Martin Robillard’s “Software Design” and his course materials as the
main source

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 7 / 26

Encapsulation

Outline

1 Background

2 Object-Oriented Design

3 Encapsulation

4 Design with Polymorphism
Review: Polymorphism and Java Interface
Interface Segregation Principle

5 References

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 8 / 26

Encapsulation

Encapsulation

Discussed it in the context of SOA, now as a concept in Object-Oriented
Design
▶ encapsulate both data and computation to protect them from

corruption, and to simplify the design
Principle of Information Hiding
▶ “The principle generally states that you only show a client that part

of the total information that is really necessary for the client’s task
and you hide all remaining information.”

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 9 / 26

Encapsulation

Design Class – Encapsulation

Design is about making decisions – what decisions make when we design a
class?

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 10 / 26

Encapsulation

Class Encapsulation Guidelines

1. Make all fields private (almost all the time) – unless you have a
strong argument to make a field non-private

2. Do not automatically supply a class with a “getter” and “setter” for
every field

3. Make your classes immutable whenever possible (meaning of
immutable? how?)
▶ Try to avoid defining methods that both change (“mutate”) the state

of an object and return ("access") a value
▶ Define your instance variables as final whenever possible

4. Ensure your accessor methods do not return a reference to a mutable
instance variable

Source:
Robillard – Module 01

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 11 / 26

https://github.com/prmr/SoftwareDesign/blob/master/modules/Module-01.md

Encapsulation

Let’s examine the design of the Deck class

How does it violate the Encapsulation class design guidelines?
1 public class Deck
2 {
3 public Stack <Card > aCards = new Stack < >();
4
5 public Stack <Card > getCards ()
6 { return aCards ; }
7
8 public void setStack (Stack <Card > pCards)
9 { aCards = pCards ; }

10
11 public void applyAll (List <Stack <Card >> pTaskList)
12 { pTaskList .add(aCards); }
13 }

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 12 / 26

Encapsulation

Let’s examine the design of the Deck class

How does it violate the Encapsulation class design guidelines?
1 public class Deck
2 {
3 // violates 1. public -> no door to guide the data field
4 public Stack <Card > aCards = new Stack < >();
5
6 // violates 4. return reference to a class variable -> font door

is open
7 public Stack <Card > getCards ()
8 { return aCards ; }
9

10 /* violates 2 and 3. set a reference to a class variable ; but
caller

11 keeps a reference -- back door open because caller has a
reference

12 to containing object */
13 public void setStack (Stack <Card > pCards)
14 { aCards = pCards ; }
15
16 /* violates 3. set a reference to a class variable ; but caller
17 keeps a reference -- back door open because caller has a

reference
18 to containing object */
19 public void applyAll (List <Stack <Card >> pTaskList)
20 { pTaskList .add(aCards); }
21 }

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 13 / 26

Encapsulation

Let’s redesign the Deck class

Refactor: Improving the design of code without changing its functionality

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 14 / 26

Encapsulation

Let’s redesign the application

Perhaps, the Deck class was ill-conceptualized ...

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 15 / 26

Design with Polymorphism

Outline

1 Background

2 Object-Oriented Design

3 Encapsulation

4 Design with Polymorphism
Review: Polymorphism and Java Interface
Interface Segregation Principle

5 References

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 16 / 26

Design with Polymorphism Review: Polymorphism and Java Interface

Java Interface

▶ In Java, interfaces provide a specification of the methods that it
should be possible to invoke on the objects of a class

▶ For instance the interface Icon specifies three method signatures and
documents their expected behavior

▶ What problem does it help solve?
1 interface Icon {
2 public int getIconWidth ();
3 public int getIconHeigth ();
4 public void painIcon ();
5 }
6
7 public class ImageIcon implements Icon { // ... }

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 17 / 26

Design with Polymorphism Review: Polymorphism and Java Interface

Java Interface

What problem does it help solve? Consider the following
1 class Game {
2 Icon aIcon = ...;
3
4 public void showIcon () {
5 if(aIcon . getIconWidth () > 0 && aIcon . getIconHeight () > 0

) {
6 aIcon . paintIcon (...) ;
7 }
8 }
9 ...

▶ In practice, Icon can be in different formats and even computed
on-the-fly. How can we represent that in an Object-Oriented language
like Java?

▶ Use Java interface
▶ Can we also solve it using subclass?

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 18 / 26

Design with Polymorphism Review: Polymorphism and Java Interface

Polymorphism

▶ In plain language, polymorphism is the ability to have different shapes
▶ In the context of the Icon example, it is the ability of the abstractly

specified Icon to have different implementations
▶ Polymorphism as supported by Java interfaces supports two very

useful quality features in software design:
▶ Loose coupling, because the code using a set of methods is not tied to

a specific implementation of these methods
▶ Extensibility, because we can easily add new implementations of an

interface (new "shapes" in the polymorphic relation)

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 19 / 26

Design with Polymorphism Interface Segregation Principle

The Interface Segregation Principle (ISP)

When designing multiple classes, we ought to consider how these classes
interact.
▶ terminology: client and server classes/objects – the client class/object

invokes the server class/object’s method
The ISP: clients should not be forced to depend on interfaces they do not
need.

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 20 / 26

Design with Polymorphism Interface Segregation Principle

Violation of ISP: Example

How do the following design violate the ISP?

Source:
Robillard – Module 02

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 21 / 26

https://github.com/prmr/SoftwareDesign/blob/master/modules/Module-02.md

Design with Polymorphism Interface Segregation Principle

Violation of ISP: Example

How do the following design violate the ISP?

▶ Clients depend on services they do not need, e.g., Course depends on
a class that supplies a service reviewScientificPaper.

▶ With this design it is not possible to have any object besides an
instance of Professor provide the lecture functionality.

Source:
Robillard – Module 02

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 22 / 26

https://github.com/prmr/SoftwareDesign/blob/master/modules/Module-02.md

Design with Polymorphism Interface Segregation Principle

Improved Design

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 23 / 26

Design with Polymorphism Interface Segregation Principle

Improved Design

With what mechanism is the design improved?

▶ decoupling behavior from implementation
▶ clients depend on interfaces that represent specific roles directly

relevant to each client.
▶ benefits: louse coupling and extensibility

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 24 / 26

References

Outline

1 Background

2 Object-Oriented Design

3 Encapsulation

4 Design with Polymorphism
Review: Polymorphism and Java Interface
Interface Segregation Principle

5 References

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 25 / 26

References

“Introduction to Software Design with Java” by Martin P. Robillard
“Engineering Software as a Service” by Armando Fox and David Patterson
(2nd Edition)
“Essentials of Software Engineering” by Frank Tsui, Orlando Karam, and
Barbara Bernal(4th Edition)

H. Chen (CUNY-BC) Object-Oriented Design April 22, 2025 26 / 26

https://link.springer.com/book/10.1007/978-3-030-24094-3

	Background
	Object-Oriented Design
	Encapsulation
	Design with Polymorphism
	Review: Polymorphism and Java Interface
	Interface Segregation Principle

	References

